多静态荷载情况下自适应桁架结构的形式查找方法

Q1 Arts and Humanities
Jan Gade, F. Geiger, Roman Kemmler, Manfred Bischoff
{"title":"多静态荷载情况下自适应桁架结构的形式查找方法","authors":"Jan Gade, F. Geiger, Roman Kemmler, Manfred Bischoff","doi":"10.1177/09560599231212707","DOIUrl":null,"url":null,"abstract":"Form-finding is an essential task in the design of efficient lightweight structures. It is based on the crucial assumption of one single shape-determining load case, usually represented by self-weight. Adaptive components integrated into the structure open a way to even more efficient lightweight designs, as such structures can adapt their shapes to varying external loads and redistribute internal forces. This article presents a method for form-finding of adaptive truss structures subject to multiple, independently acting load cases, also incorporating possible design constraints. To ensure the consistency of the manufacturing lengths of passive elements in all load cases, special constraints are considered. The method enables to reduce sensitivity of the structural shape with respect to various different loads by means of actuation to meet design and serviceability requirements with a lower structural mass compared to conventional design strategies. This is demonstrated within a replaced real-world-like setting of an adaptive suspension truss bridge.","PeriodicalId":34964,"journal":{"name":"International Journal of Space Structures","volume":"95 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A form-finding method for adaptive truss structures subject to multiple static load cases\",\"authors\":\"Jan Gade, F. Geiger, Roman Kemmler, Manfred Bischoff\",\"doi\":\"10.1177/09560599231212707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Form-finding is an essential task in the design of efficient lightweight structures. It is based on the crucial assumption of one single shape-determining load case, usually represented by self-weight. Adaptive components integrated into the structure open a way to even more efficient lightweight designs, as such structures can adapt their shapes to varying external loads and redistribute internal forces. This article presents a method for form-finding of adaptive truss structures subject to multiple, independently acting load cases, also incorporating possible design constraints. To ensure the consistency of the manufacturing lengths of passive elements in all load cases, special constraints are considered. The method enables to reduce sensitivity of the structural shape with respect to various different loads by means of actuation to meet design and serviceability requirements with a lower structural mass compared to conventional design strategies. This is demonstrated within a replaced real-world-like setting of an adaptive suspension truss bridge.\",\"PeriodicalId\":34964,\"journal\":{\"name\":\"International Journal of Space Structures\",\"volume\":\"95 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Space Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09560599231212707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Space Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09560599231212707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

形状确定是设计高效轻质结构的一项基本任务。它基于单一形状决定载荷情况的重要假设,通常以自重表示。集成到结构中的自适应组件为更高效的轻质结构设计开辟了道路,因为这类结构可以根据不同的外部载荷调整形状,并重新分配内力。本文介绍了一种自适应桁架结构的形状搜索方法,该方法可承受多种独立作用的荷载情况,同时还纳入了可能的设计约束条件。为确保所有荷载情况下被动元件制造长度的一致性,考虑了特殊的约束条件。与传统的设计策略相比,该方法能够通过驱动手段降低结构形状对各种不同载荷的敏感性,从而以较小的结构质量满足设计和适用性要求。这一点已在一座自适应悬索桁架桥的现实环境中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A form-finding method for adaptive truss structures subject to multiple static load cases
Form-finding is an essential task in the design of efficient lightweight structures. It is based on the crucial assumption of one single shape-determining load case, usually represented by self-weight. Adaptive components integrated into the structure open a way to even more efficient lightweight designs, as such structures can adapt their shapes to varying external loads and redistribute internal forces. This article presents a method for form-finding of adaptive truss structures subject to multiple, independently acting load cases, also incorporating possible design constraints. To ensure the consistency of the manufacturing lengths of passive elements in all load cases, special constraints are considered. The method enables to reduce sensitivity of the structural shape with respect to various different loads by means of actuation to meet design and serviceability requirements with a lower structural mass compared to conventional design strategies. This is demonstrated within a replaced real-world-like setting of an adaptive suspension truss bridge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Space Structures
International Journal of Space Structures Arts and Humanities-Conservation
CiteScore
2.00
自引率
0.00%
发文量
21
期刊介绍: The aim of the journal is to provide an international forum for the interchange of information on all aspects of analysis, design and construction of space structures. The scope of the journal encompasses structures such as single-, double- and multi-layer grids, barrel vaults, domes, towers, folded plates, radar dishes, tensegrity structures, stressed skin assemblies, foldable structures, pneumatic systems and cable arrangements. No limitation on the type of material is imposed and the scope includes structures constructed in steel, aluminium, timber, concrete, plastics, paperboard and fabric.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信