利用 Abelmoschus esculenthus L. 果实提取物绿色合成氧化锌纳米粒子:抗氧化、光保护、抗炎和抗菌研究

Christina Astutiningsih, Tias Eka Rahmawati, Nanik Astutik Rahman, Meri Meri
{"title":"利用 Abelmoschus esculenthus L. 果实提取物绿色合成氧化锌纳米粒子:抗氧化、光保护、抗炎和抗菌研究","authors":"Christina Astutiningsih, Tias Eka Rahmawati, Nanik Astutik Rahman, Meri Meri","doi":"10.47352/jmans.2774-3047.204","DOIUrl":null,"url":null,"abstract":"Nanoparticles are extensively studied for their promising biological properties. In this study, the fruit extract of Abelmoschus esculenthus L. was used as a chelating agent for the synthesis of zinc oxide nanoparticles (ZnOPs-AE) using a zinc acetate solution. The prepared ZnOPs-AE were identified and characterized using UV-vis spectroscopy, Fourier-transformed infrared spectroscopy (FTIR), particle size analyzer (PSA), scanning electron microscopy (SEM), and energy dispersive spectrum (EDS). The green synthesized ZnOPs-AE were evaluated for their antioxidant, photoprotective, anti-inflammatory, and antibacterial activities. The synthesized nanoparticles showed an intensity peak at 370 nm in the UV-vis spectrum. The FTIR result shows the presence of O-H, C=O, C-O, C-OH, and C=C chelating functional groups on the surface of nanoparticles. The size of ZnOPs-AE was determined using a PSA with particle size distribution of 102.2 nm. The ZnOPs-AE were shown to be spherical by SEM analysis and composition was 82.11% and 14.79% for Zn and O, respectively. The antioxidant properties of ZnOPs-AE showed significant antioxidant potential in DPPH, ABTS, and FRAP assays compared to the quercetin standard. The photoprotection activity test showed a SPF value of 19.63, the percentage of erythema transmission was 5.98%,  and the percentage of pigmentation transmission was 5.62%. The ZnOPs-AE showed good anti-inflammatory with the synthesized nanoparticle performing activity between positive control and the fruit extract of Abelmoschus esculenthus L. Also, the ZnOPs-AE exhibited good antibacterial activity against Staphylococcus aureus (20.78 mm) and Pseudomonas aeruginosae (11.13 mm). Overall, the results highlight the effectiveness and potential of ZnOPs-AE for biological application.","PeriodicalId":506457,"journal":{"name":"Journal of Multidisciplinary Applied Natural Science","volume":"170 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of ZnO Nanoparticles using Abelmoschus esculenthus L. Fruit Extract: Antioxidant, Photoprotective, Anti-inflammatory, and Antibacterial Studies\",\"authors\":\"Christina Astutiningsih, Tias Eka Rahmawati, Nanik Astutik Rahman, Meri Meri\",\"doi\":\"10.47352/jmans.2774-3047.204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles are extensively studied for their promising biological properties. In this study, the fruit extract of Abelmoschus esculenthus L. was used as a chelating agent for the synthesis of zinc oxide nanoparticles (ZnOPs-AE) using a zinc acetate solution. The prepared ZnOPs-AE were identified and characterized using UV-vis spectroscopy, Fourier-transformed infrared spectroscopy (FTIR), particle size analyzer (PSA), scanning electron microscopy (SEM), and energy dispersive spectrum (EDS). The green synthesized ZnOPs-AE were evaluated for their antioxidant, photoprotective, anti-inflammatory, and antibacterial activities. The synthesized nanoparticles showed an intensity peak at 370 nm in the UV-vis spectrum. The FTIR result shows the presence of O-H, C=O, C-O, C-OH, and C=C chelating functional groups on the surface of nanoparticles. The size of ZnOPs-AE was determined using a PSA with particle size distribution of 102.2 nm. The ZnOPs-AE were shown to be spherical by SEM analysis and composition was 82.11% and 14.79% for Zn and O, respectively. The antioxidant properties of ZnOPs-AE showed significant antioxidant potential in DPPH, ABTS, and FRAP assays compared to the quercetin standard. The photoprotection activity test showed a SPF value of 19.63, the percentage of erythema transmission was 5.98%,  and the percentage of pigmentation transmission was 5.62%. The ZnOPs-AE showed good anti-inflammatory with the synthesized nanoparticle performing activity between positive control and the fruit extract of Abelmoschus esculenthus L. Also, the ZnOPs-AE exhibited good antibacterial activity against Staphylococcus aureus (20.78 mm) and Pseudomonas aeruginosae (11.13 mm). Overall, the results highlight the effectiveness and potential of ZnOPs-AE for biological application.\",\"PeriodicalId\":506457,\"journal\":{\"name\":\"Journal of Multidisciplinary Applied Natural Science\",\"volume\":\"170 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multidisciplinary Applied Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47352/jmans.2774-3047.204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Applied Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47352/jmans.2774-3047.204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米颗粒因其具有良好的生物特性而被广泛研究。在这项研究中,使用醋酸锌溶液作为螯合剂合成了氧化锌纳米粒子(ZnOPs-AE)。利用紫外-可见光谱、傅立叶变换红外光谱、粒度分析仪、扫描电子显微镜和能量色散光谱对制备的 ZnOPs-AE 进行了鉴定和表征。对绿色合成的 ZnOPs-AE 进行了抗氧化、光保护、抗炎和抗菌活性评估。在紫外可见光谱中,合成的纳米颗粒在 370 纳米处出现了一个强度峰。傅立叶变换红外光谱结果表明,纳米颗粒表面存在 O-H、C=O、C-O、C-OH 和 C=C 螯合官能团。用粒度分布为 102.2 nm 的 PSA 测定了 ZnOPs-AE 的粒度。扫描电镜分析表明 ZnOPs-AE 为球形,Zn 和 O 的含量分别为 82.11% 和 14.79%。与槲皮素标准品相比,ZnOPs-AE 的抗氧化特性在 DPPH、ABTS 和 FRAP 试验中显示出显著的抗氧化潜力。光保护活性测试显示,ZnOPs-AE 的 SPF 值为 19.63,红斑透射率为 5.98%,色素沉着透射率为 5.62%。此外,ZnOPs-AE 还对金黄色葡萄球菌(20.78 mm)和绿脓杆菌(11.13 mm)具有良好的抗菌活性。总之,研究结果凸显了 ZnOPs-AE 在生物应用方面的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Synthesis of ZnO Nanoparticles using Abelmoschus esculenthus L. Fruit Extract: Antioxidant, Photoprotective, Anti-inflammatory, and Antibacterial Studies
Nanoparticles are extensively studied for their promising biological properties. In this study, the fruit extract of Abelmoschus esculenthus L. was used as a chelating agent for the synthesis of zinc oxide nanoparticles (ZnOPs-AE) using a zinc acetate solution. The prepared ZnOPs-AE were identified and characterized using UV-vis spectroscopy, Fourier-transformed infrared spectroscopy (FTIR), particle size analyzer (PSA), scanning electron microscopy (SEM), and energy dispersive spectrum (EDS). The green synthesized ZnOPs-AE were evaluated for their antioxidant, photoprotective, anti-inflammatory, and antibacterial activities. The synthesized nanoparticles showed an intensity peak at 370 nm in the UV-vis spectrum. The FTIR result shows the presence of O-H, C=O, C-O, C-OH, and C=C chelating functional groups on the surface of nanoparticles. The size of ZnOPs-AE was determined using a PSA with particle size distribution of 102.2 nm. The ZnOPs-AE were shown to be spherical by SEM analysis and composition was 82.11% and 14.79% for Zn and O, respectively. The antioxidant properties of ZnOPs-AE showed significant antioxidant potential in DPPH, ABTS, and FRAP assays compared to the quercetin standard. The photoprotection activity test showed a SPF value of 19.63, the percentage of erythema transmission was 5.98%,  and the percentage of pigmentation transmission was 5.62%. The ZnOPs-AE showed good anti-inflammatory with the synthesized nanoparticle performing activity between positive control and the fruit extract of Abelmoschus esculenthus L. Also, the ZnOPs-AE exhibited good antibacterial activity against Staphylococcus aureus (20.78 mm) and Pseudomonas aeruginosae (11.13 mm). Overall, the results highlight the effectiveness and potential of ZnOPs-AE for biological application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信