新的高分辨率南部非洲地磁场模型

IF 1.5 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
A. Nel, A. Morschhauser, F. Vervelidou, Jürgen Matzka
{"title":"新的高分辨率南部非洲地磁场模型","authors":"A. Nel, A. Morschhauser, F. Vervelidou, Jürgen Matzka","doi":"10.17159/sajs.2024/11809","DOIUrl":null,"url":null,"abstract":"Earth’s magnetic field is a dynamic, changing phenomenon. The geomagnetic field consists of contributions from several sources, of which the main field originating in Earth’s core makes up the bulk. On regional and local scales at Earth’s surface, the lithospheric field can make a substantial contribution to the overall field and therefore needs to be considered in field models. A locally derived regional core field model, named HMOREG, has been shown to give accurate predictions of the southern African region. In this study, a new regional field model called the South African Regional Core and Crust model (SARCC) is introduced. This is the first time that a local lithospheric model, estimated by employing the revised spherical cap harmonic analysis modelling method, has been combined with the core component of CHAOS-6, a global field model. It is compared here with the existing regional field model as well as with global core field models. The SARCC model shows small-scale variations that are not present in the other three models. Including a lithospheric magnetic field component likely contributed to the better performance of the SARCC model when compared to other global and local field models. The SARCC model showed a 33% reduction in error compared to surface observations obtained from field surveys and INTERMAGNET stations in the Y component, and HMOREG showed a 7% reduction in error compared to the global field models. The new model can easily be updated with global geomagnetic models that incorporate the most recent, state-ofthe- art core and magnetospheric field models.","PeriodicalId":21928,"journal":{"name":"South African Journal of Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new high-resolution geomagnetic field model for southern Africa\",\"authors\":\"A. Nel, A. Morschhauser, F. Vervelidou, Jürgen Matzka\",\"doi\":\"10.17159/sajs.2024/11809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earth’s magnetic field is a dynamic, changing phenomenon. The geomagnetic field consists of contributions from several sources, of which the main field originating in Earth’s core makes up the bulk. On regional and local scales at Earth’s surface, the lithospheric field can make a substantial contribution to the overall field and therefore needs to be considered in field models. A locally derived regional core field model, named HMOREG, has been shown to give accurate predictions of the southern African region. In this study, a new regional field model called the South African Regional Core and Crust model (SARCC) is introduced. This is the first time that a local lithospheric model, estimated by employing the revised spherical cap harmonic analysis modelling method, has been combined with the core component of CHAOS-6, a global field model. It is compared here with the existing regional field model as well as with global core field models. The SARCC model shows small-scale variations that are not present in the other three models. Including a lithospheric magnetic field component likely contributed to the better performance of the SARCC model when compared to other global and local field models. The SARCC model showed a 33% reduction in error compared to surface observations obtained from field surveys and INTERMAGNET stations in the Y component, and HMOREG showed a 7% reduction in error compared to the global field models. The new model can easily be updated with global geomagnetic models that incorporate the most recent, state-ofthe- art core and magnetospheric field models.\",\"PeriodicalId\":21928,\"journal\":{\"name\":\"South African Journal of Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.17159/sajs.2024/11809\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.17159/sajs.2024/11809","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地球磁场是一种动态变化的现象。地磁场由多个来源组成,其中源自地核的主要磁场占绝大部分。在地球表面的区域和局部范围内,岩石圈磁场对整个磁场的贡献很大,因此需要在磁场模型中加以考虑。一个名为 HMOREG 的局部推导区域核心场模型已被证明能准确预测南部非洲地区。在这项研究中,引入了一个新的区域场模型,称为南非区域核心和地壳模型(SARCC)。这是首次将采用修订的球帽谐波分析建模方法估算出的当地岩石圈模型与全球实地模型 CHAOS-6 的核心部分相结合。在此将其与现有的区域场模型以及全球核心场模型进行比较。SARCC 模型显示了其他三个模型所没有的小尺度变化。与其他全球和局部场模型相比,将岩石圈磁场部分包括在内可能是 SARCC 模型性能更好的原因。与野外勘测和 INTERMAGNET 站获得的 Y 部分地表观测数据相比,SARCC 模型的误差减少了 33%;与全球磁场模型相比,HMOREG 的误差减少了 7%。新模型可以很容易地与全球地磁模型一起更新,后者包含了最新的、最先进的核心和磁层场模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new high-resolution geomagnetic field model for southern Africa
Earth’s magnetic field is a dynamic, changing phenomenon. The geomagnetic field consists of contributions from several sources, of which the main field originating in Earth’s core makes up the bulk. On regional and local scales at Earth’s surface, the lithospheric field can make a substantial contribution to the overall field and therefore needs to be considered in field models. A locally derived regional core field model, named HMOREG, has been shown to give accurate predictions of the southern African region. In this study, a new regional field model called the South African Regional Core and Crust model (SARCC) is introduced. This is the first time that a local lithospheric model, estimated by employing the revised spherical cap harmonic analysis modelling method, has been combined with the core component of CHAOS-6, a global field model. It is compared here with the existing regional field model as well as with global core field models. The SARCC model shows small-scale variations that are not present in the other three models. Including a lithospheric magnetic field component likely contributed to the better performance of the SARCC model when compared to other global and local field models. The SARCC model showed a 33% reduction in error compared to surface observations obtained from field surveys and INTERMAGNET stations in the Y component, and HMOREG showed a 7% reduction in error compared to the global field models. The new model can easily be updated with global geomagnetic models that incorporate the most recent, state-ofthe- art core and magnetospheric field models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
South African Journal of Science
South African Journal of Science 综合性期刊-综合性期刊
CiteScore
3.20
自引率
4.20%
发文量
131
审稿时长
1 months
期刊介绍: The South African Journal of Science is a multidisciplinary journal published bimonthly by the Academy of Science of South Africa. Our mandate is to publish original research with an interdisciplinary or regional focus, which will interest readers from more than one discipline, and to provide a forum for discussion of news and developments in research and higher education. Authors are requested to write their papers and reports in a manner and style that is intelligible to specialists and non-specialists alike. Research contributions, which are peer reviewed, are of three kinds: Review Articles, Research Articles and Research Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信