P. Y. D. Maulida, Sri Hartati, Yuliar Firdaus, Anjar Taufik Hidayat, L. J. Diguna, Dominik Kowal, Annalisa Bruno, D. Cortecchia, A. Arramel, M. Birowosuto
{"title":"作为新兴材料的卤化物包晶和金属瑀的低维异质结构的最新发展:基础、实施和展望","authors":"P. Y. D. Maulida, Sri Hartati, Yuliar Firdaus, Anjar Taufik Hidayat, L. J. Diguna, Dominik Kowal, Annalisa Bruno, D. Cortecchia, A. Arramel, M. Birowosuto","doi":"10.1063/5.0176763","DOIUrl":null,"url":null,"abstract":"In the past decades, halide perovskites and chalcogenide materials have provided significant contributions to the vast development for optoelectronic applications. Halide perovskites are known for their tunable properties, while chalcogenides are known for their high efficiency. The combination of these types of materials as heterostructures is thought to have been able to produce a superior device/photophysical performance. A peculiar aspect to consider is an inherent weak interaction between these layers via the stacking of different materials, promoting the realization of van der Waals heterostructures with novel functional properties. In this review, we summarize the progress and foresee the prospectives of material systems obtained by combining low-dimensional (0D, 1D, and 2D) halide perovskite and chalcogenide systems. Both emergent materials share their promise in terms of energy and charge transfer consideration. In addition, several aspects that are mutually important in this context will be outlined, namely, interlayer excitons, interfacial engineering, quantum confinement effect, and light–matter interactions. Based on these fundamental approaches, we translate the current understanding by highlighting several representative heterostructures with prominent performance such as light-emitting diodes, x-ray detectors, photodetectors, and solar cells. In this review, we focus on the rich chemistry and photophysics of these heterostructures, emphasizing the open questions related to their structure–property relationship. Finally, potential research directions and outlooks based on the implementation of halide perovskite–chalcogenide heterostructures are also proposed.","PeriodicalId":502275,"journal":{"name":"Chemical Physics Reviews","volume":"62 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent developments in low-dimensional heterostructures of halide perovskites and metal chalcogenides as emergent materials: Fundamental, implementation, and outlook\",\"authors\":\"P. Y. D. Maulida, Sri Hartati, Yuliar Firdaus, Anjar Taufik Hidayat, L. J. Diguna, Dominik Kowal, Annalisa Bruno, D. Cortecchia, A. Arramel, M. Birowosuto\",\"doi\":\"10.1063/5.0176763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decades, halide perovskites and chalcogenide materials have provided significant contributions to the vast development for optoelectronic applications. Halide perovskites are known for their tunable properties, while chalcogenides are known for their high efficiency. The combination of these types of materials as heterostructures is thought to have been able to produce a superior device/photophysical performance. A peculiar aspect to consider is an inherent weak interaction between these layers via the stacking of different materials, promoting the realization of van der Waals heterostructures with novel functional properties. In this review, we summarize the progress and foresee the prospectives of material systems obtained by combining low-dimensional (0D, 1D, and 2D) halide perovskite and chalcogenide systems. Both emergent materials share their promise in terms of energy and charge transfer consideration. In addition, several aspects that are mutually important in this context will be outlined, namely, interlayer excitons, interfacial engineering, quantum confinement effect, and light–matter interactions. Based on these fundamental approaches, we translate the current understanding by highlighting several representative heterostructures with prominent performance such as light-emitting diodes, x-ray detectors, photodetectors, and solar cells. In this review, we focus on the rich chemistry and photophysics of these heterostructures, emphasizing the open questions related to their structure–property relationship. Finally, potential research directions and outlooks based on the implementation of halide perovskite–chalcogenide heterostructures are also proposed.\",\"PeriodicalId\":502275,\"journal\":{\"name\":\"Chemical Physics Reviews\",\"volume\":\"62 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0176763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0176763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent developments in low-dimensional heterostructures of halide perovskites and metal chalcogenides as emergent materials: Fundamental, implementation, and outlook
In the past decades, halide perovskites and chalcogenide materials have provided significant contributions to the vast development for optoelectronic applications. Halide perovskites are known for their tunable properties, while chalcogenides are known for their high efficiency. The combination of these types of materials as heterostructures is thought to have been able to produce a superior device/photophysical performance. A peculiar aspect to consider is an inherent weak interaction between these layers via the stacking of different materials, promoting the realization of van der Waals heterostructures with novel functional properties. In this review, we summarize the progress and foresee the prospectives of material systems obtained by combining low-dimensional (0D, 1D, and 2D) halide perovskite and chalcogenide systems. Both emergent materials share their promise in terms of energy and charge transfer consideration. In addition, several aspects that are mutually important in this context will be outlined, namely, interlayer excitons, interfacial engineering, quantum confinement effect, and light–matter interactions. Based on these fundamental approaches, we translate the current understanding by highlighting several representative heterostructures with prominent performance such as light-emitting diodes, x-ray detectors, photodetectors, and solar cells. In this review, we focus on the rich chemistry and photophysics of these heterostructures, emphasizing the open questions related to their structure–property relationship. Finally, potential research directions and outlooks based on the implementation of halide perovskite–chalcogenide heterostructures are also proposed.