{"title":"k-Pell 和 Tribonacci 数的常用术语","authors":"Hunar Taher, Saroj Kumar Dash","doi":"10.29020/nybg.ejpam.v17i1.4989","DOIUrl":null,"url":null,"abstract":"Let Tm be a Tribonacci sequence, and let the k-Pell sequence be a generalization of the Pell sequence for k ≥ 2 . The first k terms are 0, 0, ..., 0, 1, and each term after the forewords is defined by linear recurrence P (k) n = 2P (k) n−1 + P (k) n−2 + ... + P (k) n−k . We study the solution of the Diophantine equation P (k) n = Tm for the positive integer (n, k, m) with k ≥ 2. We use the lower bound for linear forms in logarithms of algebraic numbers with the theory of the continued fraction.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Common Terms of k-Pell and Tribonacci Numbers\",\"authors\":\"Hunar Taher, Saroj Kumar Dash\",\"doi\":\"10.29020/nybg.ejpam.v17i1.4989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Tm be a Tribonacci sequence, and let the k-Pell sequence be a generalization of the Pell sequence for k ≥ 2 . The first k terms are 0, 0, ..., 0, 1, and each term after the forewords is defined by linear recurrence P (k) n = 2P (k) n−1 + P (k) n−2 + ... + P (k) n−k . We study the solution of the Diophantine equation P (k) n = Tm for the positive integer (n, k, m) with k ≥ 2. We use the lower bound for linear forms in logarithms of algebraic numbers with the theory of the continued fraction.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v17i1.4989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v17i1.4989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 Tm 为 Tribonacci 数列,k-Pell 数列是 k ≥ 2 时 Pell 数列的一般化。前 k 项分别为 0,0,...,0,1,而前项之后的每项都由线性递归 P (k) n = 2P (k) n-1 + P (k) n-2 + ... 定义。+ P (k) n-k 。我们研究 k ≥ 2 的正整数 (n, k, m) 的二叉方程 P (k) n = Tm 的解。我们利用代数数对数线性形式的下界与续分数理论。
Let Tm be a Tribonacci sequence, and let the k-Pell sequence be a generalization of the Pell sequence for k ≥ 2 . The first k terms are 0, 0, ..., 0, 1, and each term after the forewords is defined by linear recurrence P (k) n = 2P (k) n−1 + P (k) n−2 + ... + P (k) n−k . We study the solution of the Diophantine equation P (k) n = Tm for the positive integer (n, k, m) with k ≥ 2. We use the lower bound for linear forms in logarithms of algebraic numbers with the theory of the continued fraction.