{"title":"离散非线性薛定谔方程复势初值问题的全局吸引子和 l^p 解","authors":"Guoping Zhang, Ghder Aburamyah","doi":"10.58997/ejde.2024.12","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the global well-posedness of initial value problems of the time-dependent discrete nonlinear Schrodinger equation with a complex potential and sufficiently general nonlinearity on a multidimensional lattice in weighted \\( l^p\\) spaces for \\( 1< p <\\infty\\). Thanks to our improved estimates we are able to prove the existence of global attractor for \\( l^p\\) solutions to the initial value problem. \nFor more information see https://ejde.math.txstate.edu/Volumes/2024/12/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global attractor and l^p solutions to initial value problems of discrete nonlinear Schrodinger equations complex potential\",\"authors\":\"Guoping Zhang, Ghder Aburamyah\",\"doi\":\"10.58997/ejde.2024.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the global well-posedness of initial value problems of the time-dependent discrete nonlinear Schrodinger equation with a complex potential and sufficiently general nonlinearity on a multidimensional lattice in weighted \\\\( l^p\\\\) spaces for \\\\( 1< p <\\\\infty\\\\). Thanks to our improved estimates we are able to prove the existence of global attractor for \\\\( l^p\\\\) solutions to the initial value problem. \\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/12/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们研究了在加权\( l^p\)空间的多维晶格上具有复杂势和足够一般非线性的时变离散非线性薛定谔方程的初值问题的全局良好提出性,对于\( 1< p <\infty\) 来说。由于我们改进了估计,我们能够证明初值问题的 \( l^p\) 解存在全局吸引子。更多信息见 https://ejde.math.txstate.edu/Volumes/2024/12/abstr.html
Global attractor and l^p solutions to initial value problems of discrete nonlinear Schrodinger equations complex potential
In this article, we investigate the global well-posedness of initial value problems of the time-dependent discrete nonlinear Schrodinger equation with a complex potential and sufficiently general nonlinearity on a multidimensional lattice in weighted \( l^p\) spaces for \( 1< p <\infty\). Thanks to our improved estimates we are able to prove the existence of global attractor for \( l^p\) solutions to the initial value problem.
For more information see https://ejde.math.txstate.edu/Volumes/2024/12/abstr.html