用卡普托-法布里齐奥分式求解分式里卡提微分方程

IF 1 Q1 MATHEMATICS
Eman Abuteen
{"title":"用卡普托-法布里齐奥分式求解分式里卡提微分方程","authors":"Eman Abuteen","doi":"10.29020/nybg.ejpam.v17i1.5013","DOIUrl":null,"url":null,"abstract":"This article offers an analytical solution for the fractional Riccati differential equation in three distinct cases. These cases are determined by the discriminant and the analytical solution based on the properties of the Caputo-Fabrizio fractional derivative and integral. Several examples were tested using this analytical solution. It is noteworthy that various methods have yielded related results as indicated in the literature.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving Fractional Riccati Differential Equation with Caputo-Fabrizio Fractional Derivative\",\"authors\":\"Eman Abuteen\",\"doi\":\"10.29020/nybg.ejpam.v17i1.5013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article offers an analytical solution for the fractional Riccati differential equation in three distinct cases. These cases are determined by the discriminant and the analytical solution based on the properties of the Caputo-Fabrizio fractional derivative and integral. Several examples were tested using this analytical solution. It is noteworthy that various methods have yielded related results as indicated in the literature.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v17i1.5013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v17i1.5013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了分数里卡蒂微分方程在三种不同情况下的解析解。这些情况由判别式和基于 Caputo-Fabrizio 分数导数和积分性质的分析解决定。使用该分析解法对几个实例进行了测试。值得注意的是,如文献所示,各种方法都得出了相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Fractional Riccati Differential Equation with Caputo-Fabrizio Fractional Derivative
This article offers an analytical solution for the fractional Riccati differential equation in three distinct cases. These cases are determined by the discriminant and the analytical solution based on the properties of the Caputo-Fabrizio fractional derivative and integral. Several examples were tested using this analytical solution. It is noteworthy that various methods have yielded related results as indicated in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信