积分微分方程模型初值问题的数值模拟

IF 1 Q1 MATHEMATICS
Faizah Alharbi, Sharifah Althubiti
{"title":"积分微分方程模型初值问题的数值模拟","authors":"Faizah Alharbi, Sharifah Althubiti","doi":"10.29020/nybg.ejpam.v17i1.5024","DOIUrl":null,"url":null,"abstract":"In this article, the Volterra-Fredholm integral equation (V-FIE) is derived from an initial value problem of kind integro-differential equation (IVP). We discuss the existence and uniqueness of the solution to the problem in Hilbert space. A numerical method is used to reduce this type of equation to System of Fredholm integral equations of the second kind(SFIEs). In light of this, the clustering method and the Galerkin method to solve the system of second-order Fredholm integral equations(SFIEs) and calculate the error in each case. Finally, the approximate and exact solutions are plotted on the same coordinate plane Using MATLAB code (2022).","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Initial Value Problem of Integro-differential Equation Models\",\"authors\":\"Faizah Alharbi, Sharifah Althubiti\",\"doi\":\"10.29020/nybg.ejpam.v17i1.5024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the Volterra-Fredholm integral equation (V-FIE) is derived from an initial value problem of kind integro-differential equation (IVP). We discuss the existence and uniqueness of the solution to the problem in Hilbert space. A numerical method is used to reduce this type of equation to System of Fredholm integral equations of the second kind(SFIEs). In light of this, the clustering method and the Galerkin method to solve the system of second-order Fredholm integral equations(SFIEs) and calculate the error in each case. Finally, the approximate and exact solutions are plotted on the same coordinate plane Using MATLAB code (2022).\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v17i1.5024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v17i1.5024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,Volterra-Fredholm 积分方程(V-FIE)是从一种积分微分方程(IVP)的初值问题推导出来的。我们讨论了该问题在希尔伯特空间的解的存在性和唯一性。我们使用数值方法将这类方程简化为第二类弗雷德霍姆积分方程系统(SFIEs)。有鉴于此,采用聚类法和 Galerkin 法求解二阶弗雷德霍姆积分方程(SFIEs)系统,并计算每种情况下的误差。最后,使用 MATLAB 代码(2022)在同一坐标平面上绘制近似解和精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Simulation of Initial Value Problem of Integro-differential Equation Models
In this article, the Volterra-Fredholm integral equation (V-FIE) is derived from an initial value problem of kind integro-differential equation (IVP). We discuss the existence and uniqueness of the solution to the problem in Hilbert space. A numerical method is used to reduce this type of equation to System of Fredholm integral equations of the second kind(SFIEs). In light of this, the clustering method and the Galerkin method to solve the system of second-order Fredholm integral equations(SFIEs) and calculate the error in each case. Finally, the approximate and exact solutions are plotted on the same coordinate plane Using MATLAB code (2022).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信