Javier A. Hassan, Aziz B. Tapeing, Hounam B. Copel, Alcyn R. Bakkang, Sharifa Dianne A. Aming
{"title":"一些图形的 $J^2$ 独立参数","authors":"Javier A. Hassan, Aziz B. Tapeing, Hounam B. Copel, Alcyn R. Bakkang, Sharifa Dianne A. Aming","doi":"10.29020/nybg.ejpam.v17i1.4946","DOIUrl":null,"url":null,"abstract":"Let G be a graph. A subset I′ of a vertex-set V (G) of G is called a J2-independent in Gif for every pair of distinct vertices a, b ∈ I′, dG(a, b) ̸= 1, N2 G[a]\\N2 G[b] ̸= ∅ and N2 G[b]\\N2 G[a] ̸= ∅. The maximum cardinality among all J2-independent sets in G, denoted by αJ2 (G), is called the J2-independence number of G. Any J2-independent set I′satisfying |I′| = αJ2 (G) is called the maximum J2-independent set of G or an αJ2 -set of G. In this paper, we establish some boundsof this parameter on a generalized graph, join and corona of two graphs. We characterize J2-independent sets in some families of graphs, and we use these results to derive the exact values of parameters of these graphs. Moreover, we investigate the connections of this new parameter with other variants of independence parameters. In fact, we show that the J2-independence number of a graph is always less than or equal to the standard independence number.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$J^2$-Independence Parameters of Some Graphs\",\"authors\":\"Javier A. Hassan, Aziz B. Tapeing, Hounam B. Copel, Alcyn R. Bakkang, Sharifa Dianne A. Aming\",\"doi\":\"10.29020/nybg.ejpam.v17i1.4946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be a graph. A subset I′ of a vertex-set V (G) of G is called a J2-independent in Gif for every pair of distinct vertices a, b ∈ I′, dG(a, b) ̸= 1, N2 G[a]\\\\N2 G[b] ̸= ∅ and N2 G[b]\\\\N2 G[a] ̸= ∅. The maximum cardinality among all J2-independent sets in G, denoted by αJ2 (G), is called the J2-independence number of G. Any J2-independent set I′satisfying |I′| = αJ2 (G) is called the maximum J2-independent set of G or an αJ2 -set of G. In this paper, we establish some boundsof this parameter on a generalized graph, join and corona of two graphs. We characterize J2-independent sets in some families of graphs, and we use these results to derive the exact values of parameters of these graphs. Moreover, we investigate the connections of this new parameter with other variants of independence parameters. In fact, we show that the J2-independence number of a graph is always less than or equal to the standard independence number.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v17i1.4946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v17i1.4946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 G 是一个图。如果每一对不同的顶点 a、b ∈ I′,dG(a, b) ̸= 1,N2 G[a]\N2 G[b] ̸= ∅,且 N2 G[b]\N2 G[a] ̸= ∅,则 G 的顶点集 V(G)的子集 I′称为 G 中的 J2 独立集。满足 |I′| = αJ2 (G) 的任何 J2 独立集 I′ 都称为 G 的最大 J2 独立集或 G 的 αJ2 集。我们描述了一些图形族中与 J2 无关的集合的特征,并利用这些结果推导出这些图形参数的精确值。此外,我们还研究了这一新参数与其他独立参数变体之间的联系。事实上,我们证明了图形的 J2-独立性数总是小于或等于标准独立性数。
Let G be a graph. A subset I′ of a vertex-set V (G) of G is called a J2-independent in Gif for every pair of distinct vertices a, b ∈ I′, dG(a, b) ̸= 1, N2 G[a]\N2 G[b] ̸= ∅ and N2 G[b]\N2 G[a] ̸= ∅. The maximum cardinality among all J2-independent sets in G, denoted by αJ2 (G), is called the J2-independence number of G. Any J2-independent set I′satisfying |I′| = αJ2 (G) is called the maximum J2-independent set of G or an αJ2 -set of G. In this paper, we establish some boundsof this parameter on a generalized graph, join and corona of two graphs. We characterize J2-independent sets in some families of graphs, and we use these results to derive the exact values of parameters of these graphs. Moreover, we investigate the connections of this new parameter with other variants of independence parameters. In fact, we show that the J2-independence number of a graph is always less than or equal to the standard independence number.