Swetha Chikkasabbenahalli Venkatesh, Sibi Shaji, Balasubramanian Meenakshi Sundaram
{"title":"使用多级堆叠集合分类的虚假简介检测模型","authors":"Swetha Chikkasabbenahalli Venkatesh, Sibi Shaji, Balasubramanian Meenakshi Sundaram","doi":"10.46604/peti.2024.13200","DOIUrl":null,"url":null,"abstract":"Fake profile identification on social media platforms is essential for preserving a reliable online community. Previous studies have primarily used conventional classifiers for fake account identification on social networking sites, neglecting feature selection and class balancing to enhance performance. This study introduces a novel multistage stacked ensemble classification model to enhance fake profile detection accuracy, especially in imbalanced datasets. The model comprises three phases: feature selection, base learning, and meta-learning for classification. The novelty of the work lies in utilizing chi-squared feature-class association-based feature selection, combining stacked ensemble and cost-sensitive learning. The research findings indicate that the proposed model significantly enhances fake profile detection efficiency. Employing cost-sensitive learning enhances accuracy on the Facebook, Instagram, and Twitter spam datasets with 95%, 98.20%, and 81% precision, outperforming conventional and advanced classifiers. It is demonstrated that the proposed model has the potential to enhance the security and reliability of online social networks, compared with existing models.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":"186 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fake Profile Detection Model Using Multistage Stacked Ensemble Classification\",\"authors\":\"Swetha Chikkasabbenahalli Venkatesh, Sibi Shaji, Balasubramanian Meenakshi Sundaram\",\"doi\":\"10.46604/peti.2024.13200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake profile identification on social media platforms is essential for preserving a reliable online community. Previous studies have primarily used conventional classifiers for fake account identification on social networking sites, neglecting feature selection and class balancing to enhance performance. This study introduces a novel multistage stacked ensemble classification model to enhance fake profile detection accuracy, especially in imbalanced datasets. The model comprises three phases: feature selection, base learning, and meta-learning for classification. The novelty of the work lies in utilizing chi-squared feature-class association-based feature selection, combining stacked ensemble and cost-sensitive learning. The research findings indicate that the proposed model significantly enhances fake profile detection efficiency. Employing cost-sensitive learning enhances accuracy on the Facebook, Instagram, and Twitter spam datasets with 95%, 98.20%, and 81% precision, outperforming conventional and advanced classifiers. It is demonstrated that the proposed model has the potential to enhance the security and reliability of online social networks, compared with existing models.\",\"PeriodicalId\":33402,\"journal\":{\"name\":\"Proceedings of Engineering and Technology Innovation\",\"volume\":\"186 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/peti.2024.13200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2024.13200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fake Profile Detection Model Using Multistage Stacked Ensemble Classification
Fake profile identification on social media platforms is essential for preserving a reliable online community. Previous studies have primarily used conventional classifiers for fake account identification on social networking sites, neglecting feature selection and class balancing to enhance performance. This study introduces a novel multistage stacked ensemble classification model to enhance fake profile detection accuracy, especially in imbalanced datasets. The model comprises three phases: feature selection, base learning, and meta-learning for classification. The novelty of the work lies in utilizing chi-squared feature-class association-based feature selection, combining stacked ensemble and cost-sensitive learning. The research findings indicate that the proposed model significantly enhances fake profile detection efficiency. Employing cost-sensitive learning enhances accuracy on the Facebook, Instagram, and Twitter spam datasets with 95%, 98.20%, and 81% precision, outperforming conventional and advanced classifiers. It is demonstrated that the proposed model has the potential to enhance the security and reliability of online social networks, compared with existing models.