Yilong Zhang, Bifa Chen, Yuxuan Du, Ye Qiao, Cunfu Wang
{"title":"用基于周期复合函数的方法设计具有可编程泊松比的结构材料","authors":"Yilong Zhang, Bifa Chen, Yuxuan Du, Ye Qiao, Cunfu Wang","doi":"10.1115/1.4064634","DOIUrl":null,"url":null,"abstract":"\n Advances in additive manufacturing enable fabrication of architected materials composed of microstructures with extreme mechanical properties. In the design of such architected materials, the parameterization of microstructures determines not just the computational cost, but also connectivity between adjacent microstructures. In this paper, we propose a periodic composite function(PCF)-based approach for designing microstructures. The shape of the microstructures is characterized by the value of the periodic composite functions. The proposed method can program microstructures with both positive and negative Poisson's ratios by a small number of parameters. Furthermore, due to its implicit representation, the proposed method allows for continuously tiling of microstructures with different mechanical properties. Explicit geometric features of the PCF-based microstructures are extracted, and the condition to maintain connectivity between adjacent microstructures is derived. Based on the proposed approach, multiple groups of 2D and 3D microstructures with Poisson's ratios ranging from negative to positive are presented. Combining with a deep neural network(DNN) based surrogate model to predict macroscopic material properties of the microstructures, the proposed method is applied to the design of architected materials for elastic deformation control. Numerical examples on both microstructure representation and architected materials design are presented to demonstrate the efficacy of the proposed approach.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic composite function-based approach for designing architected materials with programmable Poisson's ratios\",\"authors\":\"Yilong Zhang, Bifa Chen, Yuxuan Du, Ye Qiao, Cunfu Wang\",\"doi\":\"10.1115/1.4064634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Advances in additive manufacturing enable fabrication of architected materials composed of microstructures with extreme mechanical properties. In the design of such architected materials, the parameterization of microstructures determines not just the computational cost, but also connectivity between adjacent microstructures. In this paper, we propose a periodic composite function(PCF)-based approach for designing microstructures. The shape of the microstructures is characterized by the value of the periodic composite functions. The proposed method can program microstructures with both positive and negative Poisson's ratios by a small number of parameters. Furthermore, due to its implicit representation, the proposed method allows for continuously tiling of microstructures with different mechanical properties. Explicit geometric features of the PCF-based microstructures are extracted, and the condition to maintain connectivity between adjacent microstructures is derived. Based on the proposed approach, multiple groups of 2D and 3D microstructures with Poisson's ratios ranging from negative to positive are presented. Combining with a deep neural network(DNN) based surrogate model to predict macroscopic material properties of the microstructures, the proposed method is applied to the design of architected materials for elastic deformation control. Numerical examples on both microstructure representation and architected materials design are presented to demonstrate the efficacy of the proposed approach.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064634\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064634","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Periodic composite function-based approach for designing architected materials with programmable Poisson's ratios
Advances in additive manufacturing enable fabrication of architected materials composed of microstructures with extreme mechanical properties. In the design of such architected materials, the parameterization of microstructures determines not just the computational cost, but also connectivity between adjacent microstructures. In this paper, we propose a periodic composite function(PCF)-based approach for designing microstructures. The shape of the microstructures is characterized by the value of the periodic composite functions. The proposed method can program microstructures with both positive and negative Poisson's ratios by a small number of parameters. Furthermore, due to its implicit representation, the proposed method allows for continuously tiling of microstructures with different mechanical properties. Explicit geometric features of the PCF-based microstructures are extracted, and the condition to maintain connectivity between adjacent microstructures is derived. Based on the proposed approach, multiple groups of 2D and 3D microstructures with Poisson's ratios ranging from negative to positive are presented. Combining with a deep neural network(DNN) based surrogate model to predict macroscopic material properties of the microstructures, the proposed method is applied to the design of architected materials for elastic deformation control. Numerical examples on both microstructure representation and architected materials design are presented to demonstrate the efficacy of the proposed approach.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.