线性多变量系统低灵敏度卢恩贝格尔降阶观测器的优化设计

Fu-I Chou
{"title":"线性多变量系统低灵敏度卢恩贝格尔降阶观测器的优化设计","authors":"Fu-I Chou","doi":"10.1177/00202940231222182","DOIUrl":null,"url":null,"abstract":"For the linear multivariable systems, by combining both merits of orthogonal-function approach and evolutionary optimization, in this paper, a new method is presented for designing a Luenberger reduced-order observer to solve the low-sensitivity design issue for physical system parameter deviation and simultaneously to minimize a measurement of the quadratic performance for reducing state transient estimation error. Two given examples illustrate the effectiveness of the presented new low-sensitivity design approach on state estimation performance. From the given examples, it shows that the estimated state errors are not sensitive to system parameter deviation and have the asymptotical convergence property. Besides, the performances are apparently superior to those without considering low-sensitivity design means.","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"280 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal design of Luenberger reduced-order observer with low sensitivity for linear multivariable systems\",\"authors\":\"Fu-I Chou\",\"doi\":\"10.1177/00202940231222182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the linear multivariable systems, by combining both merits of orthogonal-function approach and evolutionary optimization, in this paper, a new method is presented for designing a Luenberger reduced-order observer to solve the low-sensitivity design issue for physical system parameter deviation and simultaneously to minimize a measurement of the quadratic performance for reducing state transient estimation error. Two given examples illustrate the effectiveness of the presented new low-sensitivity design approach on state estimation performance. From the given examples, it shows that the estimated state errors are not sensitive to system parameter deviation and have the asymptotical convergence property. Besides, the performances are apparently superior to those without considering low-sensitivity design means.\",\"PeriodicalId\":510299,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"280 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940231222182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940231222182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于线性多变量系统,本文结合了正交函数法和进化优化法的优点,提出了一种设计伦伯格降阶观测器的新方法,以解决物理系统参数偏差的低灵敏度设计问题,并同时最小化二次性能的测量,从而减少状态瞬态估计误差。两个给定的示例说明了所介绍的新低灵敏度设计方法对状态估计性能的有效性。从给出的示例中可以看出,估计的状态误差对系统参数偏差不敏感,并具有渐近收敛特性。此外,其性能明显优于不考虑低灵敏度设计手段的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal design of Luenberger reduced-order observer with low sensitivity for linear multivariable systems
For the linear multivariable systems, by combining both merits of orthogonal-function approach and evolutionary optimization, in this paper, a new method is presented for designing a Luenberger reduced-order observer to solve the low-sensitivity design issue for physical system parameter deviation and simultaneously to minimize a measurement of the quadratic performance for reducing state transient estimation error. Two given examples illustrate the effectiveness of the presented new low-sensitivity design approach on state estimation performance. From the given examples, it shows that the estimated state errors are not sensitive to system parameter deviation and have the asymptotical convergence property. Besides, the performances are apparently superior to those without considering low-sensitivity design means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信