基于预定义离散化的简化势源密度函数

IF 2.2 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
Jeong Eun Kim , In Sun Kim , Soo Ran Won , Daehyun Wee
{"title":"基于预定义离散化的简化势源密度函数","authors":"Jeong Eun Kim ,&nbsp;In Sun Kim ,&nbsp;Soo Ran Won ,&nbsp;Daehyun Wee","doi":"10.1016/j.jer.2024.02.009","DOIUrl":null,"url":null,"abstract":"<div><div>The potential source contribution function (PSCF) method is widely used in the analysis of air pollutant source areas, but it also faces several limitations. To address such limitations, the potential source density function (PSDF) method was developed based on Gaussian process regression (GPR). However, the PSDF model requires more computational resources than the PSCF model. Here, we present an enhanced model with improved speed. We discretized the PSDF method by assigning a predetermined spatial correlation between cells through a priori known correlation length scale. The time taken was reduced by 25–30% from that of the original PSDF method, while the values representing the air pollution sources exhibited only a slight difference from the original ones. Our new method reduces the time required for computational calculations, measures potential sources with comparable precision, and ensures the reliability and source intensity of the results.</div></div>","PeriodicalId":48803,"journal":{"name":"Journal of Engineering Research","volume":"13 2","pages":"Pages 1487-1495"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simplified potential source density function based on predefined discretization\",\"authors\":\"Jeong Eun Kim ,&nbsp;In Sun Kim ,&nbsp;Soo Ran Won ,&nbsp;Daehyun Wee\",\"doi\":\"10.1016/j.jer.2024.02.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The potential source contribution function (PSCF) method is widely used in the analysis of air pollutant source areas, but it also faces several limitations. To address such limitations, the potential source density function (PSDF) method was developed based on Gaussian process regression (GPR). However, the PSDF model requires more computational resources than the PSCF model. Here, we present an enhanced model with improved speed. We discretized the PSDF method by assigning a predetermined spatial correlation between cells through a priori known correlation length scale. The time taken was reduced by 25–30% from that of the original PSDF method, while the values representing the air pollution sources exhibited only a slight difference from the original ones. Our new method reduces the time required for computational calculations, measures potential sources with comparable precision, and ensures the reliability and source intensity of the results.</div></div>\",\"PeriodicalId\":48803,\"journal\":{\"name\":\"Journal of Engineering Research\",\"volume\":\"13 2\",\"pages\":\"Pages 1487-1495\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307187724000373\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307187724000373","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

潜在源贡献函数(PSCF)方法在大气污染源区域分析中得到了广泛的应用,但也存在一些局限性。针对这一局限性,基于高斯过程回归(GPR),提出了潜在源密度函数(PSDF)方法。然而,PSDF模型比PSCF模型需要更多的计算资源。在这里,我们提出了一个提高速度的增强模型。我们通过先验已知的相关长度尺度在细胞之间分配预定的空间相关性,从而离散化PSDF方法。与原PSDF法相比,时间缩短了25-30%,而代表空气污染源的数值与原PSDF法相差不大。我们的新方法减少了计算计算所需的时间,以相当的精度测量潜在源,并保证了结果的可靠性和源强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simplified potential source density function based on predefined discretization
The potential source contribution function (PSCF) method is widely used in the analysis of air pollutant source areas, but it also faces several limitations. To address such limitations, the potential source density function (PSDF) method was developed based on Gaussian process regression (GPR). However, the PSDF model requires more computational resources than the PSCF model. Here, we present an enhanced model with improved speed. We discretized the PSDF method by assigning a predetermined spatial correlation between cells through a priori known correlation length scale. The time taken was reduced by 25–30% from that of the original PSDF method, while the values representing the air pollution sources exhibited only a slight difference from the original ones. Our new method reduces the time required for computational calculations, measures potential sources with comparable precision, and ensures the reliability and source intensity of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Research
Journal of Engineering Research ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
10.00%
发文量
181
审稿时长
20 weeks
期刊介绍: Journal of Engineering Research (JER) is a international, peer reviewed journal which publishes full length original research papers, reviews, case studies related to all areas of Engineering such as: Civil, Mechanical, Industrial, Electrical, Computer, Chemical, Petroleum, Aerospace, Architectural, Biomedical, Coastal, Environmental, Marine & Ocean, Metallurgical & Materials, software, Surveying, Systems and Manufacturing Engineering. In particular, JER focuses on innovative approaches and methods that contribute to solving the environmental and manufacturing problems, which exist primarily in the Arabian Gulf region and the Middle East countries. Kuwait University used to publish the Journal "Kuwait Journal of Science and Engineering" (ISSN: 1024-8684), which included Science and Engineering articles since 1974. In 2011 the decision was taken to split KJSE into two independent Journals - "Journal of Engineering Research "(JER) and "Kuwait Journal of Science" (KJS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信