相互作用粒子系统的量子化

J. Akahori, Norio Konno, Rikuki Okamoto, Iwao Sato
{"title":"相互作用粒子系统的量子化","authors":"J. Akahori, Norio Konno, Rikuki Okamoto, Iwao Sato","doi":"10.26421/qic24.3-4-2","DOIUrl":null,"url":null,"abstract":"Interacting particle systems studied in this paper are probabilistic cellular automata with nearest-neighbor interaction including the Domany-Kinzel model. A special case of the Domany-Kinzel model is directed percolation. We regard the interacting particle system as a Markov chain on a graph. Then we present a new quantization of the interacting particle system. After that, we introduce a zeta function of the quantized model and give its determinant expression. Moreover, we calculate the absolute zeta function of the quantized model for the Domany-Kinzel model.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"250 1","pages":"210-226"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantization of interacting particle systems\",\"authors\":\"J. Akahori, Norio Konno, Rikuki Okamoto, Iwao Sato\",\"doi\":\"10.26421/qic24.3-4-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interacting particle systems studied in this paper are probabilistic cellular automata with nearest-neighbor interaction including the Domany-Kinzel model. A special case of the Domany-Kinzel model is directed percolation. We regard the interacting particle system as a Markov chain on a graph. Then we present a new quantization of the interacting particle system. After that, we introduce a zeta function of the quantized model and give its determinant expression. Moreover, we calculate the absolute zeta function of the quantized model for the Domany-Kinzel model.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"250 1\",\"pages\":\"210-226\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/qic24.3-4-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic24.3-4-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究的相互作用粒子系统是具有近邻相互作用的概率蜂窝自动机,包括 Domany-Kinzel 模型。多曼-金泽尔模型的一个特例是有向渗滤。我们将相互作用的粒子系统视为图上的马尔可夫链。然后,我们提出了相互作用粒子系统的新量化方法。之后,我们引入了量化模型的zeta函数,并给出了它的行列式表达。此外,我们还计算了多曼-金泽尔模型的量化模型的绝对zeta函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quantization of interacting particle systems
Interacting particle systems studied in this paper are probabilistic cellular automata with nearest-neighbor interaction including the Domany-Kinzel model. A special case of the Domany-Kinzel model is directed percolation. We regard the interacting particle system as a Markov chain on a graph. Then we present a new quantization of the interacting particle system. After that, we introduce a zeta function of the quantized model and give its determinant expression. Moreover, we calculate the absolute zeta function of the quantized model for the Domany-Kinzel model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信