Woong Son , Minkyu Oh , Heejung Yu , Bang Chul Jung
{"title":"针对潜在窃听者的 MU-MISO 下行链路网络物理层安全性","authors":"Woong Son , Minkyu Oh , Heejung Yu , Bang Chul Jung","doi":"10.1016/j.dcan.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, wireless security has been highlighted as one of the most important techniques for 6G mobile communication systems. Many researchers have tried to improve the Physical-Layer Security (PLS) performance such as Secrecy Outage Probability (SOP) and Secrecy Energy-Efficiency (SEE). The SOP indicates the outage probability that the data transmission between legitimate devices does not guarantee a certain reliability level, and the SEE is defined as the ratio between the achievable secrecy-rate and the consumed transmit power. In this paper, we consider a Multi-User Multi-Input Single-Output (MU-MISO) downlink cellular network where a legitimate Base Station (BS) equipped with multiple transmit antennas sends secure information to multiple legitimate Mobile Stations (MSs), and multiple <em>potential</em> eavesdroppers (EVEs) equipped with a single receive antenna try to eavesdrop on this information. Each potential EVE tries to intercept the secure information, i.e., the private message, from the legitimate BS to legitimate MSs with a certain eavesdropping probability. To securely receive the private information, each legitimate MS feeds back its effective channel gain to the legitimate BS only when the effective channel gain is higher than a certain threshold, i.e., the legitimate MSs adopt an <em>Opportunistic</em> Feedback (OF) strategy. In such eavesdropping channels, both SOP and SEE are analyzed as performance measures of PLS and their closed-form expressions are derived mathematically. Based on the analytical results, it is shown that the SOP of the OF strategy approaches that of a Full Feedback (FF) strategy as the number of legitimate MSs or the number of antennas at the BS increases. Furthermore, the trade-off between SOP and SEE as a function of the channel feedback threshold in the OF strategy is investigated. The analytical results and related observations are verified by numerical simulations.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 2","pages":"Pages 424-431"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical-layer security in MU-MISO downlink networks against potential eavesdroppers\",\"authors\":\"Woong Son , Minkyu Oh , Heejung Yu , Bang Chul Jung\",\"doi\":\"10.1016/j.dcan.2024.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recently, wireless security has been highlighted as one of the most important techniques for 6G mobile communication systems. Many researchers have tried to improve the Physical-Layer Security (PLS) performance such as Secrecy Outage Probability (SOP) and Secrecy Energy-Efficiency (SEE). The SOP indicates the outage probability that the data transmission between legitimate devices does not guarantee a certain reliability level, and the SEE is defined as the ratio between the achievable secrecy-rate and the consumed transmit power. In this paper, we consider a Multi-User Multi-Input Single-Output (MU-MISO) downlink cellular network where a legitimate Base Station (BS) equipped with multiple transmit antennas sends secure information to multiple legitimate Mobile Stations (MSs), and multiple <em>potential</em> eavesdroppers (EVEs) equipped with a single receive antenna try to eavesdrop on this information. Each potential EVE tries to intercept the secure information, i.e., the private message, from the legitimate BS to legitimate MSs with a certain eavesdropping probability. To securely receive the private information, each legitimate MS feeds back its effective channel gain to the legitimate BS only when the effective channel gain is higher than a certain threshold, i.e., the legitimate MSs adopt an <em>Opportunistic</em> Feedback (OF) strategy. In such eavesdropping channels, both SOP and SEE are analyzed as performance measures of PLS and their closed-form expressions are derived mathematically. Based on the analytical results, it is shown that the SOP of the OF strategy approaches that of a Full Feedback (FF) strategy as the number of legitimate MSs or the number of antennas at the BS increases. Furthermore, the trade-off between SOP and SEE as a function of the channel feedback threshold in the OF strategy is investigated. The analytical results and related observations are verified by numerical simulations.</div></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":\"11 2\",\"pages\":\"Pages 424-431\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864824000221\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864824000221","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Physical-layer security in MU-MISO downlink networks against potential eavesdroppers
Recently, wireless security has been highlighted as one of the most important techniques for 6G mobile communication systems. Many researchers have tried to improve the Physical-Layer Security (PLS) performance such as Secrecy Outage Probability (SOP) and Secrecy Energy-Efficiency (SEE). The SOP indicates the outage probability that the data transmission between legitimate devices does not guarantee a certain reliability level, and the SEE is defined as the ratio between the achievable secrecy-rate and the consumed transmit power. In this paper, we consider a Multi-User Multi-Input Single-Output (MU-MISO) downlink cellular network where a legitimate Base Station (BS) equipped with multiple transmit antennas sends secure information to multiple legitimate Mobile Stations (MSs), and multiple potential eavesdroppers (EVEs) equipped with a single receive antenna try to eavesdrop on this information. Each potential EVE tries to intercept the secure information, i.e., the private message, from the legitimate BS to legitimate MSs with a certain eavesdropping probability. To securely receive the private information, each legitimate MS feeds back its effective channel gain to the legitimate BS only when the effective channel gain is higher than a certain threshold, i.e., the legitimate MSs adopt an Opportunistic Feedback (OF) strategy. In such eavesdropping channels, both SOP and SEE are analyzed as performance measures of PLS and their closed-form expressions are derived mathematically. Based on the analytical results, it is shown that the SOP of the OF strategy approaches that of a Full Feedback (FF) strategy as the number of legitimate MSs or the number of antennas at the BS increases. Furthermore, the trade-off between SOP and SEE as a function of the channel feedback threshold in the OF strategy is investigated. The analytical results and related observations are verified by numerical simulations.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.