{"title":"从固定智能手机摄像头自动检测模拟竞走中的故障","authors":"Tomohiro Suzuki, K. Takeda, Keisuke Fujii","doi":"10.2478/ijcss-2024-0002","DOIUrl":null,"url":null,"abstract":"\n Automatic fault detection is a major challenge in many sports. In race walking, judges visually detect faults according to the rules. Hence, automatic fault detection systems will help a training of race walking without experts’ visual judgement. Some studies have attempted to use sensors and machine learning to automatically detect faults. However, there are problems associated with sensor attachments and equipment such as a high-speed camera, which conflict with the visual judgement of judges, and the interpretability of the fault detection models. In this study, we proposed an automatic fault detection system for non-contact measurement. We used pose estimation and machine learning models trained based on the judgements of multiple qualified judges to realize fair fault judgement. We verified them using smartphone videos of normal race walking and walking with intentional faults in several athletes including the medalist of the Tokyo Olympics. The results show that the proposed system detected faults with an average accuracy of over 90%. We also revealed that the machine learning model detects faults according to the rules. In addition, the intentional faulty walking movement of the medalist was different from that of other walkers. This finding informs realization of a more general fault detection model.","PeriodicalId":38466,"journal":{"name":"International Journal of Computer Science in Sport","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Detection of Faults in Simulated Race Walking from a Fixed Smartphone Camera\",\"authors\":\"Tomohiro Suzuki, K. Takeda, Keisuke Fujii\",\"doi\":\"10.2478/ijcss-2024-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Automatic fault detection is a major challenge in many sports. In race walking, judges visually detect faults according to the rules. Hence, automatic fault detection systems will help a training of race walking without experts’ visual judgement. Some studies have attempted to use sensors and machine learning to automatically detect faults. However, there are problems associated with sensor attachments and equipment such as a high-speed camera, which conflict with the visual judgement of judges, and the interpretability of the fault detection models. In this study, we proposed an automatic fault detection system for non-contact measurement. We used pose estimation and machine learning models trained based on the judgements of multiple qualified judges to realize fair fault judgement. We verified them using smartphone videos of normal race walking and walking with intentional faults in several athletes including the medalist of the Tokyo Olympics. The results show that the proposed system detected faults with an average accuracy of over 90%. We also revealed that the machine learning model detects faults according to the rules. In addition, the intentional faulty walking movement of the medalist was different from that of other walkers. This finding informs realization of a more general fault detection model.\",\"PeriodicalId\":38466,\"journal\":{\"name\":\"International Journal of Computer Science in Sport\",\"volume\":\"89 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Science in Sport\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijcss-2024-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Science in Sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijcss-2024-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Automatic Detection of Faults in Simulated Race Walking from a Fixed Smartphone Camera
Automatic fault detection is a major challenge in many sports. In race walking, judges visually detect faults according to the rules. Hence, automatic fault detection systems will help a training of race walking without experts’ visual judgement. Some studies have attempted to use sensors and machine learning to automatically detect faults. However, there are problems associated with sensor attachments and equipment such as a high-speed camera, which conflict with the visual judgement of judges, and the interpretability of the fault detection models. In this study, we proposed an automatic fault detection system for non-contact measurement. We used pose estimation and machine learning models trained based on the judgements of multiple qualified judges to realize fair fault judgement. We verified them using smartphone videos of normal race walking and walking with intentional faults in several athletes including the medalist of the Tokyo Olympics. The results show that the proposed system detected faults with an average accuracy of over 90%. We also revealed that the machine learning model detects faults according to the rules. In addition, the intentional faulty walking movement of the medalist was different from that of other walkers. This finding informs realization of a more general fault detection model.