聚(N-异丙基丙烯酰胺)-聚(2-乙基-2-噁唑啉)的制备及其与二羧酸的自组装特性

Perihan YİLMAZ ERDOGAN, F. Bilge Emre, T. Seçkin
{"title":"聚(N-异丙基丙烯酰胺)-聚(2-乙基-2-噁唑啉)的制备及其与二羧酸的自组装特性","authors":"Perihan YİLMAZ ERDOGAN, F. Bilge Emre, T. Seçkin","doi":"10.18596/jotcsa.1150117","DOIUrl":null,"url":null,"abstract":"This study reports the synthesis of copolymers that contain thermally responsive polymers, namely poly(N-isopropylacrylamide) (PNIPAM) and poly(2-ethyl-2-oxazoline) (PEOX), as well as biodegradable side groups that are water-soluble and capable of hydrogen bonding. The assay aims to produce heat-responsive PNIPAM and PEOX polymers with di-carboxylic acid (DCA) controlled structuring of the resulting pH-sensitive nano-structured polymers. These will be used as a template in the synthesis of inorganic materials. The study demonstrated the impact of pH, salt concentration, and temperature on the polymer/DCA. This fragment describes the functional groups of the thermosensitive polymers PNIPAM and PEOX. These polymers have carboxylic acid functional groups at both ends, are water soluble, and are capable of hydrogen bonding. The structure of these polymers can be recognized with small molecules of DCA in an aqueous solution at different pH, salt concentrations, and temperatures with H-bonds. Additionally, these polymers can be used as templates to synthesize hollow silica polymers. The synthesized monomers and polymers were structurally characterized using Fourier transform infrared spectrophotometer (FT-IR). The resulting structured polymers were identified by scanning electron microscopy and atomic force microscopy (SEM, AFM). UV-VIS spectrophotometer and Differential Scanning Calorimetry (DSC) were used to determine the Lower Critical Solution temperature of the polymers.","PeriodicalId":17299,"journal":{"name":"Journal of the Turkish Chemical Society Section A: Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of Poly (N-Isopropylacrylamide) -Poly (2-Ethyl-2-Oxazoline) and Their Self-Assembly Properties with Dicarboxylic Acid\",\"authors\":\"Perihan YİLMAZ ERDOGAN, F. Bilge Emre, T. Seçkin\",\"doi\":\"10.18596/jotcsa.1150117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study reports the synthesis of copolymers that contain thermally responsive polymers, namely poly(N-isopropylacrylamide) (PNIPAM) and poly(2-ethyl-2-oxazoline) (PEOX), as well as biodegradable side groups that are water-soluble and capable of hydrogen bonding. The assay aims to produce heat-responsive PNIPAM and PEOX polymers with di-carboxylic acid (DCA) controlled structuring of the resulting pH-sensitive nano-structured polymers. These will be used as a template in the synthesis of inorganic materials. The study demonstrated the impact of pH, salt concentration, and temperature on the polymer/DCA. This fragment describes the functional groups of the thermosensitive polymers PNIPAM and PEOX. These polymers have carboxylic acid functional groups at both ends, are water soluble, and are capable of hydrogen bonding. The structure of these polymers can be recognized with small molecules of DCA in an aqueous solution at different pH, salt concentrations, and temperatures with H-bonds. Additionally, these polymers can be used as templates to synthesize hollow silica polymers. The synthesized monomers and polymers were structurally characterized using Fourier transform infrared spectrophotometer (FT-IR). The resulting structured polymers were identified by scanning electron microscopy and atomic force microscopy (SEM, AFM). UV-VIS spectrophotometer and Differential Scanning Calorimetry (DSC) were used to determine the Lower Critical Solution temperature of the polymers.\",\"PeriodicalId\":17299,\"journal\":{\"name\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Turkish Chemical Society Section A: Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18596/jotcsa.1150117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1150117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告了含有热响应聚合物(即聚(N-异丙基丙烯酰胺)(PNIPAM)和聚(2-乙基-2-噁唑啉)(PEOX))以及可生物降解的侧基(可溶于水并能形成氢键)的共聚物的合成。该试验旨在生产热响应 PNIPAM 和 PEOX 聚合物,通过二羧酸(DCA)控制所产生的 pH 敏感纳米结构聚合物的结构。这些聚合物将用作合成无机材料的模板。研究证明了 pH 值、盐浓度和温度对聚合物/DCA 的影响。本片段介绍了热敏聚合物 PNIPAM 和 PEOX 的官能团。这些聚合物的两端都有羧酸官能团,可溶于水,并能形成氢键。在不同的 pH 值、盐浓度和温度下,这些聚合物的结构可与水溶液中的小分子二氯苯甲醚通过氢键识别。此外,这些聚合物还可用作合成空心二氧化硅聚合物的模板。利用傅立叶变换红外光谱仪(FT-IR)对合成的单体和聚合物进行了结构表征。扫描电子显微镜和原子力显微镜(SEM、AFM)对合成的结构聚合物进行了鉴定。紫外-可见分光光度计和差示扫描量热仪(DSC)用于测定聚合物的下临界溶液温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation of Poly (N-Isopropylacrylamide) -Poly (2-Ethyl-2-Oxazoline) and Their Self-Assembly Properties with Dicarboxylic Acid
This study reports the synthesis of copolymers that contain thermally responsive polymers, namely poly(N-isopropylacrylamide) (PNIPAM) and poly(2-ethyl-2-oxazoline) (PEOX), as well as biodegradable side groups that are water-soluble and capable of hydrogen bonding. The assay aims to produce heat-responsive PNIPAM and PEOX polymers with di-carboxylic acid (DCA) controlled structuring of the resulting pH-sensitive nano-structured polymers. These will be used as a template in the synthesis of inorganic materials. The study demonstrated the impact of pH, salt concentration, and temperature on the polymer/DCA. This fragment describes the functional groups of the thermosensitive polymers PNIPAM and PEOX. These polymers have carboxylic acid functional groups at both ends, are water soluble, and are capable of hydrogen bonding. The structure of these polymers can be recognized with small molecules of DCA in an aqueous solution at different pH, salt concentrations, and temperatures with H-bonds. Additionally, these polymers can be used as templates to synthesize hollow silica polymers. The synthesized monomers and polymers were structurally characterized using Fourier transform infrared spectrophotometer (FT-IR). The resulting structured polymers were identified by scanning electron microscopy and atomic force microscopy (SEM, AFM). UV-VIS spectrophotometer and Differential Scanning Calorimetry (DSC) were used to determine the Lower Critical Solution temperature of the polymers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信