D. Dahnum, Holanda Ramadhita, Andreas Andreas, J. Prasetyo, A. N. Bakti, Huyen Tran Dang
{"title":"ZIF-8 上的聚(N-乙烯基-2-吡咯烷酮)包覆钯纳米颗粒催化月桂酸氢转化","authors":"D. Dahnum, Holanda Ramadhita, Andreas Andreas, J. Prasetyo, A. N. Bakti, Huyen Tran Dang","doi":"10.9767/bcrec.20114","DOIUrl":null,"url":null,"abstract":"A subclass of Metal-Organic Frameworks, Zeolitic Imidazole Frameworks-8 (ZIF-8) is known as an emerging material that has the characteristic of a large surface area, good thermal stability as well as a high porosity. Instead of having extraordinary properties, ZIF-8 consists of Lewis acid and Lewis base site on its Zn metals and 2-methylimidazole which are the important components for the catalyst. In this study, Pd-Poly(N-vinyl-2-pyrrolidone) coated on ZIF-8 (Pd-PVP@ZIF-8) was synthesized by mixed Pd-PVP solution and ZIF-8 precursors at room temperature. The Pd-PVP solution was varied from 10 to 50 ml to differentiate the Pd concentration in ZIF-8. As-synthesized 50 ml of Pd-PVP on ZIF-8 (50Pd-PVP@ZIF-8) showed catalytic activity in the conversion of 98.6% lauric acid to produce 78.2% of 1-dodecanol at optimum condition 320 °C for 6 h. The synergy between Pd-PVP as metal and ZIF-8 as metal support as well as high dispersion of Pd particles could enhance performance in the conversion of lauric acid. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"38 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic Hydroconversion of Lauric Acid Over Poly(N-vinyl-2-pyrrolidone)-Coated Pd Nanoparticles on ZIF-8\",\"authors\":\"D. Dahnum, Holanda Ramadhita, Andreas Andreas, J. Prasetyo, A. N. Bakti, Huyen Tran Dang\",\"doi\":\"10.9767/bcrec.20114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subclass of Metal-Organic Frameworks, Zeolitic Imidazole Frameworks-8 (ZIF-8) is known as an emerging material that has the characteristic of a large surface area, good thermal stability as well as a high porosity. Instead of having extraordinary properties, ZIF-8 consists of Lewis acid and Lewis base site on its Zn metals and 2-methylimidazole which are the important components for the catalyst. In this study, Pd-Poly(N-vinyl-2-pyrrolidone) coated on ZIF-8 (Pd-PVP@ZIF-8) was synthesized by mixed Pd-PVP solution and ZIF-8 precursors at room temperature. The Pd-PVP solution was varied from 10 to 50 ml to differentiate the Pd concentration in ZIF-8. As-synthesized 50 ml of Pd-PVP on ZIF-8 (50Pd-PVP@ZIF-8) showed catalytic activity in the conversion of 98.6% lauric acid to produce 78.2% of 1-dodecanol at optimum condition 320 °C for 6 h. The synergy between Pd-PVP as metal and ZIF-8 as metal support as well as high dispersion of Pd particles could enhance performance in the conversion of lauric acid. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":9366,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"38 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.20114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.20114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0