初等阿贝尔群中完全互变的乌尔姆函数分析

J. T. Otobong, Eno John, M. U. Udeme, Michael N. John
{"title":"初等阿贝尔群中完全互变的乌尔姆函数分析","authors":"J. T. Otobong, Eno John, M. U. Udeme, Michael N. John","doi":"10.37745/ijmss.13/vol12n118","DOIUrl":null,"url":null,"abstract":"This research addresses the problem posed by Chekhlov and Danchev (2015) regarding variations of Kaplansky's full transitivity in primary abelian groups 𝐺. By delving into three distinct forms of full transitivity within the endomorphism ring of 𝐺, specifically focusing on subgroups, subrings, and unitary subrings generated by commutator endomorphisms, we aim to provide a comprehensive understanding of the totally projective groups exhibiting these properties. The Ulm function of 𝐺 emerges as a key tool in solving this problem and related inquiries, leading to a precise characterization of the groups involved.","PeriodicalId":476297,"journal":{"name":"International journal of mathematics and statistics studies","volume":"345 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ulm Function Analysis of Full Transitivity in Primary Abelian Groups\",\"authors\":\"J. T. Otobong, Eno John, M. U. Udeme, Michael N. John\",\"doi\":\"10.37745/ijmss.13/vol12n118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research addresses the problem posed by Chekhlov and Danchev (2015) regarding variations of Kaplansky's full transitivity in primary abelian groups 𝐺. By delving into three distinct forms of full transitivity within the endomorphism ring of 𝐺, specifically focusing on subgroups, subrings, and unitary subrings generated by commutator endomorphisms, we aim to provide a comprehensive understanding of the totally projective groups exhibiting these properties. The Ulm function of 𝐺 emerges as a key tool in solving this problem and related inquiries, leading to a precise characterization of the groups involved.\",\"PeriodicalId\":476297,\"journal\":{\"name\":\"International journal of mathematics and statistics studies\",\"volume\":\"345 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of mathematics and statistics studies\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.37745/ijmss.13/vol12n118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of mathematics and statistics studies","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.37745/ijmss.13/vol12n118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究解决了 Chekhlov 和 Danchev(2015 年)提出的关于卡普兰斯基完全反转性在主无性群𝐺中的变化的问题。通过深入研究𝐺的内态环中三种不同形式的完全反转性,特别关注换元内态产生的子群、子环和单元子环,我们旨在提供对表现出这些性质的完全射影群的全面理解。𝐺的乌尔姆函数是解决这个问题和相关问题的关键工具,它能精确描述相关群的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ulm Function Analysis of Full Transitivity in Primary Abelian Groups
This research addresses the problem posed by Chekhlov and Danchev (2015) regarding variations of Kaplansky's full transitivity in primary abelian groups 𝐺. By delving into three distinct forms of full transitivity within the endomorphism ring of 𝐺, specifically focusing on subgroups, subrings, and unitary subrings generated by commutator endomorphisms, we aim to provide a comprehensive understanding of the totally projective groups exhibiting these properties. The Ulm function of 𝐺 emerges as a key tool in solving this problem and related inquiries, leading to a precise characterization of the groups involved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信