通过雷尼-各向同性优化传输缩小点播流量

Chi-Jen (Roger) Lo, Mahesh K. Marina, N. Sastry, Kai Xu, Saeed Fadaei, Yong Li
{"title":"通过雷尼-各向同性优化传输缩小点播流量","authors":"Chi-Jen (Roger) Lo, Mahesh K. Marina, N. Sastry, Kai Xu, Saeed Fadaei, Yong Li","doi":"10.1145/3639033","DOIUrl":null,"url":null,"abstract":"In response to the exponential surge in Internet Video on Demand (VOD) traffic, numerous research endeavors have concentrated on optimizing and enhancing infrastructure efficiency. In contrast, this paper explores whether users' demand patterns can be shaped to reduce the pressure on infrastructure. Our main idea is to design a mechanism that alters the distribution of user requests to another distribution which is much more cache-efficient, but still remains 'close enough' (in the sense of cost) to fulfil each individual user's preference. To quantify the cache footprint of VOD traffic, we propose a novel application of Rényi entropy as its proxy, capturing the 'richness' (the number of distinct videos or cache size) and the 'evenness' (the relative popularity of video accesses) of the on-demand video distribution. We then demonstrate how to decrease this metric by formulating a problem drawing on the mathematical theory of optimal transport (OT). Additionally, we establish a key equivalence theorem: minimizing Rényi entropy corresponds to maximizing soft cache hit ratio (SCHR) --- a variant of cache hit ratio allowing similarity-based video substitutions. Evaluation on a real-world, city-scale video viewing dataset reveals a remarkable 83% reduction in cache size (associated with VOD caching traffic). Crucially, in alignment with the above-mentioned equivalence theorem, our approach yields a significant uplift to SCHR, achieving close to 100%.","PeriodicalId":335883,"journal":{"name":"Proc. ACM Meas. Anal. Comput. Syst.","volume":"333 1","pages":"7:1-7:34"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shrinking VOD Traffic via Rényi-Entropic Optimal Transport\",\"authors\":\"Chi-Jen (Roger) Lo, Mahesh K. Marina, N. Sastry, Kai Xu, Saeed Fadaei, Yong Li\",\"doi\":\"10.1145/3639033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the exponential surge in Internet Video on Demand (VOD) traffic, numerous research endeavors have concentrated on optimizing and enhancing infrastructure efficiency. In contrast, this paper explores whether users' demand patterns can be shaped to reduce the pressure on infrastructure. Our main idea is to design a mechanism that alters the distribution of user requests to another distribution which is much more cache-efficient, but still remains 'close enough' (in the sense of cost) to fulfil each individual user's preference. To quantify the cache footprint of VOD traffic, we propose a novel application of Rényi entropy as its proxy, capturing the 'richness' (the number of distinct videos or cache size) and the 'evenness' (the relative popularity of video accesses) of the on-demand video distribution. We then demonstrate how to decrease this metric by formulating a problem drawing on the mathematical theory of optimal transport (OT). Additionally, we establish a key equivalence theorem: minimizing Rényi entropy corresponds to maximizing soft cache hit ratio (SCHR) --- a variant of cache hit ratio allowing similarity-based video substitutions. Evaluation on a real-world, city-scale video viewing dataset reveals a remarkable 83% reduction in cache size (associated with VOD caching traffic). Crucially, in alignment with the above-mentioned equivalence theorem, our approach yields a significant uplift to SCHR, achieving close to 100%.\",\"PeriodicalId\":335883,\"journal\":{\"name\":\"Proc. ACM Meas. Anal. Comput. Syst.\",\"volume\":\"333 1\",\"pages\":\"7:1-7:34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. ACM Meas. Anal. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3639033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Meas. Anal. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3639033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为应对互联网视频点播(VOD)流量的指数级激增,许多研究工作都集中在优化和提高基础设施的效率上。与此相反,本文探讨了是否可以通过调整用户的需求模式来减轻基础设施的压力。我们的主要想法是设计一种机制,将用户请求的分布改变为另一种分布,这种分布的缓存效率要高得多,但仍然 "足够接近"(就成本而言)满足每个用户的偏好。为了量化 VOD 流量的缓存足迹,我们提出了一种新颖的雷尼熵应用作为其代理,捕捉点播视频分布的 "丰富度"(不同视频的数量或缓存大小)和 "均匀度"(视频访问的相对流行度)。然后,我们借鉴最优传输(OT)的数学理论,提出一个问题来演示如何降低这一指标。此外,我们还建立了一个关键的等价定理:雷尼熵最小化与软缓存命中率(SCHR)最大化相对应--软缓存命中率是缓存命中率的一种变体,允许基于相似性的视频替换。在真实世界的城市规模视频观看数据集上进行的评估显示,缓存大小(与 VOD 缓存流量相关)显著减少了 83%。最重要的是,根据上述等价定理,我们的方法显著提高了 SCHR,接近 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shrinking VOD Traffic via Rényi-Entropic Optimal Transport
In response to the exponential surge in Internet Video on Demand (VOD) traffic, numerous research endeavors have concentrated on optimizing and enhancing infrastructure efficiency. In contrast, this paper explores whether users' demand patterns can be shaped to reduce the pressure on infrastructure. Our main idea is to design a mechanism that alters the distribution of user requests to another distribution which is much more cache-efficient, but still remains 'close enough' (in the sense of cost) to fulfil each individual user's preference. To quantify the cache footprint of VOD traffic, we propose a novel application of Rényi entropy as its proxy, capturing the 'richness' (the number of distinct videos or cache size) and the 'evenness' (the relative popularity of video accesses) of the on-demand video distribution. We then demonstrate how to decrease this metric by formulating a problem drawing on the mathematical theory of optimal transport (OT). Additionally, we establish a key equivalence theorem: minimizing Rényi entropy corresponds to maximizing soft cache hit ratio (SCHR) --- a variant of cache hit ratio allowing similarity-based video substitutions. Evaluation on a real-world, city-scale video viewing dataset reveals a remarkable 83% reduction in cache size (associated with VOD caching traffic). Crucially, in alignment with the above-mentioned equivalence theorem, our approach yields a significant uplift to SCHR, achieving close to 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信