V. Brigida, V. I. Golik, Elena V. Voitovich, Vladislav V. Kukartsev, Valeriy E. Gozbenko, V. Konyukhov, Tatiana A. Oparina
{"title":"实施废物循环管理概念时的矿山甲烷技术储量资源","authors":"V. Brigida, V. I. Golik, Elena V. Voitovich, Vladislav V. Kukartsev, Valeriy E. Gozbenko, V. Konyukhov, Tatiana A. Oparina","doi":"10.3390/resources13020033","DOIUrl":null,"url":null,"abstract":"From a commercial viewpoint, mine methane is the most promising object in the field of reducing emissions of climate-active gases due to circular waste management. Therefore, the task of this research is to estimate the technogenic reservoirs resources of mine methane when implementing the circular waste management concept. The novelty of the authors’ approach lies in reconstructing the response space for the dynamics of methane release from the front and cross projections: CH4 = ƒ(S; t) and CH4 = ƒ(S; L), respectively. The research established a polynomial dependence of nonlinear changes in methane concentrations in the mixture extracted by type 4 wells when a massif is undermined as a result of mining in a full-retreat panel. And the distance from the face to the start of mining the panel is reduced by 220 m. For this reason, the emission of mine methane, in case of degasification network disruption in 15 days, can amount to more than 660 thousand m3 only for wells of type no. 4.","PeriodicalId":37723,"journal":{"name":"Resources","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technogenic Reservoirs Resources of Mine Methane When Implementing the Circular Waste Management Concept\",\"authors\":\"V. Brigida, V. I. Golik, Elena V. Voitovich, Vladislav V. Kukartsev, Valeriy E. Gozbenko, V. Konyukhov, Tatiana A. Oparina\",\"doi\":\"10.3390/resources13020033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From a commercial viewpoint, mine methane is the most promising object in the field of reducing emissions of climate-active gases due to circular waste management. Therefore, the task of this research is to estimate the technogenic reservoirs resources of mine methane when implementing the circular waste management concept. The novelty of the authors’ approach lies in reconstructing the response space for the dynamics of methane release from the front and cross projections: CH4 = ƒ(S; t) and CH4 = ƒ(S; L), respectively. The research established a polynomial dependence of nonlinear changes in methane concentrations in the mixture extracted by type 4 wells when a massif is undermined as a result of mining in a full-retreat panel. And the distance from the face to the start of mining the panel is reduced by 220 m. For this reason, the emission of mine methane, in case of degasification network disruption in 15 days, can amount to more than 660 thousand m3 only for wells of type no. 4.\",\"PeriodicalId\":37723,\"journal\":{\"name\":\"Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3390/resources13020033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3390/resources13020033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Technogenic Reservoirs Resources of Mine Methane When Implementing the Circular Waste Management Concept
From a commercial viewpoint, mine methane is the most promising object in the field of reducing emissions of climate-active gases due to circular waste management. Therefore, the task of this research is to estimate the technogenic reservoirs resources of mine methane when implementing the circular waste management concept. The novelty of the authors’ approach lies in reconstructing the response space for the dynamics of methane release from the front and cross projections: CH4 = ƒ(S; t) and CH4 = ƒ(S; L), respectively. The research established a polynomial dependence of nonlinear changes in methane concentrations in the mixture extracted by type 4 wells when a massif is undermined as a result of mining in a full-retreat panel. And the distance from the face to the start of mining the panel is reduced by 220 m. For this reason, the emission of mine methane, in case of degasification network disruption in 15 days, can amount to more than 660 thousand m3 only for wells of type no. 4.
ResourcesEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.20
自引率
6.10%
发文量
0
审稿时长
11 weeks
期刊介绍:
Resources (ISSN 2079-9276) is an international, scholarly open access journal on the topic of natural resources. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and methodical details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: manuscripts regarding research proposals and research ideas will be particularly welcomed, electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Subject Areas: natural resources, water resources, mineral resources, energy resources, land resources, plant and animal resources, genetic resources, ecology resources, resource management and policy, resources conservation and recycling.