利用多光谱体素和自组织图实现深度学习增强型多传感器数据融合,用于建筑物评估

IF 2 0 HUMANITIES, MULTIDISCIPLINARY
Heritage Pub Date : 2024-02-17 DOI:10.3390/heritage7020051
Javier Raimundo, S. L. Medina, Julián Aguirre de Mata, T. Herrero-Tejedor, Enrique Priego-de-los-Santos
{"title":"利用多光谱体素和自组织图实现深度学习增强型多传感器数据融合,用于建筑物评估","authors":"Javier Raimundo, S. L. Medina, Julián Aguirre de Mata, T. Herrero-Tejedor, Enrique Priego-de-los-Santos","doi":"10.3390/heritage7020051","DOIUrl":null,"url":null,"abstract":"Efforts in the domain of building studies involve the use of a diverse array of geomatic sensors, some providing invaluable information in the form of three-dimensional point clouds and associated registered properties. However, managing the vast amounts of data generated by these sensors presents significant challenges. To ensure the effective use of multisensor data in the context of cultural heritage preservation, it is imperative that multisensor data fusion methods be designed in such a way as to facilitate informed decision-making by curators and stakeholders. We propose a novel approach to multisensor data fusion using multispectral voxels, which enable the application of deep learning algorithms as the self-organizing maps to identify and exploit the relationships between the different sensor data. Our results indicate that this approach provides a comprehensive view of the building structure and its potential pathologies, and holds great promise for revolutionizing the study of historical buildings and their potential applications in the field of cultural heritage preservation.","PeriodicalId":12934,"journal":{"name":"Heritage","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Enhanced Multisensor Data Fusion for Building Assessment Using Multispectral Voxels and Self-Organizing Maps\",\"authors\":\"Javier Raimundo, S. L. Medina, Julián Aguirre de Mata, T. Herrero-Tejedor, Enrique Priego-de-los-Santos\",\"doi\":\"10.3390/heritage7020051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efforts in the domain of building studies involve the use of a diverse array of geomatic sensors, some providing invaluable information in the form of three-dimensional point clouds and associated registered properties. However, managing the vast amounts of data generated by these sensors presents significant challenges. To ensure the effective use of multisensor data in the context of cultural heritage preservation, it is imperative that multisensor data fusion methods be designed in such a way as to facilitate informed decision-making by curators and stakeholders. We propose a novel approach to multisensor data fusion using multispectral voxels, which enable the application of deep learning algorithms as the self-organizing maps to identify and exploit the relationships between the different sensor data. Our results indicate that this approach provides a comprehensive view of the building structure and its potential pathologies, and holds great promise for revolutionizing the study of historical buildings and their potential applications in the field of cultural heritage preservation.\",\"PeriodicalId\":12934,\"journal\":{\"name\":\"Heritage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heritage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/heritage7020051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"HUMANITIES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/heritage7020051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"HUMANITIES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

建筑研究领域的工作涉及使用各种地理传感器,其中一些传感器以三维点云和相关注册属性的形式提供了宝贵的信息。然而,管理这些传感器生成的大量数据是一项重大挑战。为确保在文化遗产保护中有效利用多传感器数据,当务之急是设计多传感器数据融合方法,以便于馆长和利益相关者做出明智的决策。我们提出了一种利用多光谱体素进行多传感器数据融合的新方法,该方法能够应用深度学习算法作为自组织图,以识别和利用不同传感器数据之间的关系。我们的研究结果表明,这种方法可以全面了解建筑结构及其潜在的病理特征,为历史建筑研究及其在文化遗产保护领域的潜在应用带来了巨大的变革前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Enhanced Multisensor Data Fusion for Building Assessment Using Multispectral Voxels and Self-Organizing Maps
Efforts in the domain of building studies involve the use of a diverse array of geomatic sensors, some providing invaluable information in the form of three-dimensional point clouds and associated registered properties. However, managing the vast amounts of data generated by these sensors presents significant challenges. To ensure the effective use of multisensor data in the context of cultural heritage preservation, it is imperative that multisensor data fusion methods be designed in such a way as to facilitate informed decision-making by curators and stakeholders. We propose a novel approach to multisensor data fusion using multispectral voxels, which enable the application of deep learning algorithms as the self-organizing maps to identify and exploit the relationships between the different sensor data. Our results indicate that this approach provides a comprehensive view of the building structure and its potential pathologies, and holds great promise for revolutionizing the study of historical buildings and their potential applications in the field of cultural heritage preservation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heritage
Heritage Multiple-
CiteScore
2.90
自引率
17.60%
发文量
165
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信