在用于推荐系统的多标签深度神经网络中使用转移适应法进行动态特征扩展

F. Abdullayeva, Suleyman Suleymanzade
{"title":"在用于推荐系统的多标签深度神经网络中使用转移适应法进行动态特征扩展","authors":"F. Abdullayeva, Suleyman Suleymanzade","doi":"10.19139/soic-2310-5070-1836","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to use a convertible deep neural network (DNN) model with a transfer adaptation mechanism to deal with varying input and output numbers of neurons. The flexible DNN model serves as a multi-label classifier for the recommender system as part of the retrieval systems’ push mechanism, which learns the combination of tabular features and proposes the number of discrete offers (targets). Our retrieval system uses the transfer adaptation, mechanism, when the number of features changes, it replaces the input layer of the neural network then freezes all gradients on the following layers, trains only replaced layer, and unfreezes the entire model. The experiments show that using the transfer adaptation technique impacts stable loss decreasing and learning speed during the training process. \n  \n","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using transfer adaptation method for dynamic features expansion in multi-label deep neural network for recommender systems\",\"authors\":\"F. Abdullayeva, Suleyman Suleymanzade\",\"doi\":\"10.19139/soic-2310-5070-1836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to use a convertible deep neural network (DNN) model with a transfer adaptation mechanism to deal with varying input and output numbers of neurons. The flexible DNN model serves as a multi-label classifier for the recommender system as part of the retrieval systems’ push mechanism, which learns the combination of tabular features and proposes the number of discrete offers (targets). Our retrieval system uses the transfer adaptation, mechanism, when the number of features changes, it replaces the input layer of the neural network then freezes all gradients on the following layers, trains only replaced layer, and unfreezes the entire model. The experiments show that using the transfer adaptation technique impacts stable loss decreasing and learning speed during the training process. \\n  \\n\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建议使用具有转移适应机制的可转换深度神经网络(DNN)模型,以应对神经元的输入和输出数量变化。灵活的 DNN 模型作为推荐系统的多标签分类器,是检索系统推送机制的一部分,它可以学习表格特征的组合,并提出离散报价(目标)的数量。我们的检索系统采用转移适应机制,当特征数量发生变化时,它会替换神经网络的输入层,然后冻结下面各层的所有梯度,只训练被替换的层,并解冻整个模型。实验表明,在训练过程中,使用转移适应技术会影响损失的稳定减少和学习速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using transfer adaptation method for dynamic features expansion in multi-label deep neural network for recommender systems
In this paper, we propose to use a convertible deep neural network (DNN) model with a transfer adaptation mechanism to deal with varying input and output numbers of neurons. The flexible DNN model serves as a multi-label classifier for the recommender system as part of the retrieval systems’ push mechanism, which learns the combination of tabular features and proposes the number of discrete offers (targets). Our retrieval system uses the transfer adaptation, mechanism, when the number of features changes, it replaces the input layer of the neural network then freezes all gradients on the following layers, trains only replaced layer, and unfreezes the entire model. The experiments show that using the transfer adaptation technique impacts stable loss decreasing and learning speed during the training process.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信