{"title":"利用混合优化技术预测空气质量指数的新方法","authors":"Krishnaraj Rajagopal, Kumar Narayanan","doi":"10.54392/irjmt2427","DOIUrl":null,"url":null,"abstract":"This research presents an innovative deep learning approach for forecasting the Air Quality Index (AQI), a crucial public health concern in both developed and developing countries. The proposed methodology encompasses four stages: (a) Pre-processing, involving data cleaning and transformation; (b) Feature Extraction, capturing central tendency, dispersion, higher order statistics, and Spearman's rank correlation; (c) Feature Selection, using a novel hybrid optimization model, Particle Updated Grey Wolf Optimizer (PUGWO); and (d) an ensembled deep learning model for AQI prediction, integrating a Convolutional Neural Network (CNN), an optimized Bi-directional Long Short-Term Memory (Bi-LSTM), and an Auto-encoder. The CNN and Auto-encoder are trained on the extracted features, and their outputs are fed into the optimized Bi-LSTM for final AQI prediction. Implemented on the PYTHON platform, this model is evaluated through R^2, MAE, and RMSE error metrics. The proposed HRFKNN model demonstrates superior performance with an R-Square of 0.961, RMSE of 11.92, and MAE of 10.29, outperforming traditional models like Logistic Regression, HRFLM, and HRFDT. This underscores its effectiveness in delivering precise and reliable AQI predictions.","PeriodicalId":14412,"journal":{"name":"International Research Journal of Multidisciplinary Technovation","volume":"185 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach for Air Quality Index Prognostication using Hybrid Optimization Techniques\",\"authors\":\"Krishnaraj Rajagopal, Kumar Narayanan\",\"doi\":\"10.54392/irjmt2427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents an innovative deep learning approach for forecasting the Air Quality Index (AQI), a crucial public health concern in both developed and developing countries. The proposed methodology encompasses four stages: (a) Pre-processing, involving data cleaning and transformation; (b) Feature Extraction, capturing central tendency, dispersion, higher order statistics, and Spearman's rank correlation; (c) Feature Selection, using a novel hybrid optimization model, Particle Updated Grey Wolf Optimizer (PUGWO); and (d) an ensembled deep learning model for AQI prediction, integrating a Convolutional Neural Network (CNN), an optimized Bi-directional Long Short-Term Memory (Bi-LSTM), and an Auto-encoder. The CNN and Auto-encoder are trained on the extracted features, and their outputs are fed into the optimized Bi-LSTM for final AQI prediction. Implemented on the PYTHON platform, this model is evaluated through R^2, MAE, and RMSE error metrics. The proposed HRFKNN model demonstrates superior performance with an R-Square of 0.961, RMSE of 11.92, and MAE of 10.29, outperforming traditional models like Logistic Regression, HRFLM, and HRFDT. This underscores its effectiveness in delivering precise and reliable AQI predictions.\",\"PeriodicalId\":14412,\"journal\":{\"name\":\"International Research Journal of Multidisciplinary Technovation\",\"volume\":\"185 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal of Multidisciplinary Technovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54392/irjmt2427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal of Multidisciplinary Technovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54392/irjmt2427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Approach for Air Quality Index Prognostication using Hybrid Optimization Techniques
This research presents an innovative deep learning approach for forecasting the Air Quality Index (AQI), a crucial public health concern in both developed and developing countries. The proposed methodology encompasses four stages: (a) Pre-processing, involving data cleaning and transformation; (b) Feature Extraction, capturing central tendency, dispersion, higher order statistics, and Spearman's rank correlation; (c) Feature Selection, using a novel hybrid optimization model, Particle Updated Grey Wolf Optimizer (PUGWO); and (d) an ensembled deep learning model for AQI prediction, integrating a Convolutional Neural Network (CNN), an optimized Bi-directional Long Short-Term Memory (Bi-LSTM), and an Auto-encoder. The CNN and Auto-encoder are trained on the extracted features, and their outputs are fed into the optimized Bi-LSTM for final AQI prediction. Implemented on the PYTHON platform, this model is evaluated through R^2, MAE, and RMSE error metrics. The proposed HRFKNN model demonstrates superior performance with an R-Square of 0.961, RMSE of 11.92, and MAE of 10.29, outperforming traditional models like Logistic Regression, HRFLM, and HRFDT. This underscores its effectiveness in delivering precise and reliable AQI predictions.