Maria Ulfa, Cindy Nur Anggreani, B. Mulyani, Novia Amalia Sholeha
{"title":"用于亚甲基蓝光降解的六方二氧化钛/二氧化硅多孔微板","authors":"Maria Ulfa, Cindy Nur Anggreani, B. Mulyani, Novia Amalia Sholeha","doi":"10.9767/bcrec.20120","DOIUrl":null,"url":null,"abstract":"Hexagonal TiO2/SiO2 Porous Microplates have been successfully synthesized by incorporation of Ti precursors into SiO2 synthesized from Si precursors in a gelatin-CTAB mixture via the hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX, nitrogen adsorption-desorption and Fourier transform infrared spectroscopy (FTIR). The sample has a surface area of 735 m2/g, pore volume of 0.67 cc/g, and pore diameter of 3.2 nm, according to the results of the characterization of hexagonal TiO2/SiO2 porous microplates. The transformation of SiO2 microspheres into hexagonal TiO2/SiO2 porous microplates is revealed by a microparticle size increase of 84% and the transition of Si−O bonds into Ti−O and Si−O as measured by FTIR. The photocatalytic activity of hexagonal TiO2/SiO2 porous microplates resulted in 81.15% photodegradation of methylene blue under UV light irradiation within 60 min, which was 21 % better than SiO2. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"47 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexagonal TiO2/SiO2 Porous Microplates for Methylene Blue Photodegradation\",\"authors\":\"Maria Ulfa, Cindy Nur Anggreani, B. Mulyani, Novia Amalia Sholeha\",\"doi\":\"10.9767/bcrec.20120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hexagonal TiO2/SiO2 Porous Microplates have been successfully synthesized by incorporation of Ti precursors into SiO2 synthesized from Si precursors in a gelatin-CTAB mixture via the hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX, nitrogen adsorption-desorption and Fourier transform infrared spectroscopy (FTIR). The sample has a surface area of 735 m2/g, pore volume of 0.67 cc/g, and pore diameter of 3.2 nm, according to the results of the characterization of hexagonal TiO2/SiO2 porous microplates. The transformation of SiO2 microspheres into hexagonal TiO2/SiO2 porous microplates is revealed by a microparticle size increase of 84% and the transition of Si−O bonds into Ti−O and Si−O as measured by FTIR. The photocatalytic activity of hexagonal TiO2/SiO2 porous microplates resulted in 81.15% photodegradation of methylene blue under UV light irradiation within 60 min, which was 21 % better than SiO2. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":9366,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"47 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.20120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.20120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Hexagonal TiO2/SiO2 Porous Microplates for Methylene Blue Photodegradation
Hexagonal TiO2/SiO2 Porous Microplates have been successfully synthesized by incorporation of Ti precursors into SiO2 synthesized from Si precursors in a gelatin-CTAB mixture via the hydrothermal method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX, nitrogen adsorption-desorption and Fourier transform infrared spectroscopy (FTIR). The sample has a surface area of 735 m2/g, pore volume of 0.67 cc/g, and pore diameter of 3.2 nm, according to the results of the characterization of hexagonal TiO2/SiO2 porous microplates. The transformation of SiO2 microspheres into hexagonal TiO2/SiO2 porous microplates is revealed by a microparticle size increase of 84% and the transition of Si−O bonds into Ti−O and Si−O as measured by FTIR. The photocatalytic activity of hexagonal TiO2/SiO2 porous microplates resulted in 81.15% photodegradation of methylene blue under UV light irradiation within 60 min, which was 21 % better than SiO2. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).