关于戈特利布群 G_{n+k}(M(Z^m + Z_2,n)) for k=1,2

T. de Melo, Marek Golasiński, Rodrigo Bononi
{"title":"关于戈特利布群 G_{n+k}(M(Z^m + Z_2,n)) for k=1,2","authors":"T. de Melo, Marek Golasiński, Rodrigo Bononi","doi":"10.15673/pigc.v17i1.2562","DOIUrl":null,"url":null,"abstract":"We are motivated by [M. Arkowitz. K. Maruyama. J. Math. Soc. Japan, 66(3):735-743, 2014]: \"It would be interesting to compute other Gottlieb groups of Moore spaces such as, for example, G{n+1}(M(A,n))\" to compute the Gottlieb groups Gn+k(M(ℤm⊕ℤ2,n)) for k=1,2 and m≥1.","PeriodicalId":506891,"journal":{"name":"Proceedings of the International Geometry Center","volume":"89 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Gottlieb groups G_{n+k}(M(Z^m + Z_2,n)) for k=1,2\",\"authors\":\"T. de Melo, Marek Golasiński, Rodrigo Bononi\",\"doi\":\"10.15673/pigc.v17i1.2562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are motivated by [M. Arkowitz. K. Maruyama. J. Math. Soc. Japan, 66(3):735-743, 2014]: \\\"It would be interesting to compute other Gottlieb groups of Moore spaces such as, for example, G{n+1}(M(A,n))\\\" to compute the Gottlieb groups Gn+k(M(ℤm⊕ℤ2,n)) for k=1,2 and m≥1.\",\"PeriodicalId\":506891,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"89 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/pigc.v17i1.2562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/pigc.v17i1.2562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们受[M. Arkowitz. K. Maruyama. J. Math. Soc. Japan, 66(3):735-743, 2014]的启发:"计算摩尔空间的其他戈特利布群,例如,G{n+1}(M(A,n))",以计算 k=1,2 且 m≥1 时的戈特利布群 Gn+k(M(ℤm⊕ℤ2,n))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Gottlieb groups G_{n+k}(M(Z^m + Z_2,n)) for k=1,2
We are motivated by [M. Arkowitz. K. Maruyama. J. Math. Soc. Japan, 66(3):735-743, 2014]: "It would be interesting to compute other Gottlieb groups of Moore spaces such as, for example, G{n+1}(M(A,n))" to compute the Gottlieb groups Gn+k(M(ℤm⊕ℤ2,n)) for k=1,2 and m≥1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信