{"title":"关于戈特利布群 G_{n+k}(M(Z^m + Z_2,n)) for k=1,2","authors":"T. de Melo, Marek Golasiński, Rodrigo Bononi","doi":"10.15673/pigc.v17i1.2562","DOIUrl":null,"url":null,"abstract":"We are motivated by [M. Arkowitz. K. Maruyama. J. Math. Soc. Japan, 66(3):735-743, 2014]: \"It would be interesting to compute other Gottlieb groups of Moore spaces such as, for example, G{n+1}(M(A,n))\" to compute the Gottlieb groups Gn+k(M(ℤm⊕ℤ2,n)) for k=1,2 and m≥1.","PeriodicalId":506891,"journal":{"name":"Proceedings of the International Geometry Center","volume":"89 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Gottlieb groups G_{n+k}(M(Z^m + Z_2,n)) for k=1,2\",\"authors\":\"T. de Melo, Marek Golasiński, Rodrigo Bononi\",\"doi\":\"10.15673/pigc.v17i1.2562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are motivated by [M. Arkowitz. K. Maruyama. J. Math. Soc. Japan, 66(3):735-743, 2014]: \\\"It would be interesting to compute other Gottlieb groups of Moore spaces such as, for example, G{n+1}(M(A,n))\\\" to compute the Gottlieb groups Gn+k(M(ℤm⊕ℤ2,n)) for k=1,2 and m≥1.\",\"PeriodicalId\":506891,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"89 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/pigc.v17i1.2562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/pigc.v17i1.2562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们受[M. Arkowitz. K. Maruyama. J. Math. Soc. Japan, 66(3):735-743, 2014]的启发:"计算摩尔空间的其他戈特利布群,例如,G{n+1}(M(A,n))",以计算 k=1,2 且 m≥1 时的戈特利布群 Gn+k(M(ℤm⊕ℤ2,n))。
On Gottlieb groups G_{n+k}(M(Z^m + Z_2,n)) for k=1,2
We are motivated by [M. Arkowitz. K. Maruyama. J. Math. Soc. Japan, 66(3):735-743, 2014]: "It would be interesting to compute other Gottlieb groups of Moore spaces such as, for example, G{n+1}(M(A,n))" to compute the Gottlieb groups Gn+k(M(ℤm⊕ℤ2,n)) for k=1,2 and m≥1.