{"title":"优先权最佳-最差离散选择模型中时间描述的效用:利用弗林数据进行实证评估","authors":"Sasanka Adikari, N. Diawara","doi":"10.3390/stats7010012","DOIUrl":null,"url":null,"abstract":"Discrete choice models (DCMs) are applied in many fields and in the statistical modelling of consumer behavior. This paper focuses on a form of choice experiment, best–worst scaling in discrete choice experiments (DCEs), and the transition probability of a choice of a consumer over time. The analysis was conducted by using simulated data (choice pairs) based on data from Flynn’s (2007) ‘Quality of Life Experiment’. Most of the traditional approaches assume the choice alternatives are mutually exclusive over time, which is a questionable assumption. We introduced a new copula-based model (CO-CUB) for the transition probability, which can handle the dependent structure of best–worst choices while applying a very practical constraint. We used a conditional logit model to calculate the utility at consecutive time points and spread it to future time points under dynamic programming. We suggest that the CO-CUB transition probability algorithm is a novel way to analyze and predict choices in future time points by expressing human choice behavior. The numerical results inform decision making, help formulate strategy and learning algorithms under dynamic utility in time for best–worst DCEs.","PeriodicalId":503278,"journal":{"name":"Stats","volume":"21 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utility in Time Description in Priority Best–Worst Discrete Choice Models: An Empirical Evaluation Using Flynn’s Data\",\"authors\":\"Sasanka Adikari, N. Diawara\",\"doi\":\"10.3390/stats7010012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete choice models (DCMs) are applied in many fields and in the statistical modelling of consumer behavior. This paper focuses on a form of choice experiment, best–worst scaling in discrete choice experiments (DCEs), and the transition probability of a choice of a consumer over time. The analysis was conducted by using simulated data (choice pairs) based on data from Flynn’s (2007) ‘Quality of Life Experiment’. Most of the traditional approaches assume the choice alternatives are mutually exclusive over time, which is a questionable assumption. We introduced a new copula-based model (CO-CUB) for the transition probability, which can handle the dependent structure of best–worst choices while applying a very practical constraint. We used a conditional logit model to calculate the utility at consecutive time points and spread it to future time points under dynamic programming. We suggest that the CO-CUB transition probability algorithm is a novel way to analyze and predict choices in future time points by expressing human choice behavior. The numerical results inform decision making, help formulate strategy and learning algorithms under dynamic utility in time for best–worst DCEs.\",\"PeriodicalId\":503278,\"journal\":{\"name\":\"Stats\",\"volume\":\"21 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stats\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/stats7010012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats7010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utility in Time Description in Priority Best–Worst Discrete Choice Models: An Empirical Evaluation Using Flynn’s Data
Discrete choice models (DCMs) are applied in many fields and in the statistical modelling of consumer behavior. This paper focuses on a form of choice experiment, best–worst scaling in discrete choice experiments (DCEs), and the transition probability of a choice of a consumer over time. The analysis was conducted by using simulated data (choice pairs) based on data from Flynn’s (2007) ‘Quality of Life Experiment’. Most of the traditional approaches assume the choice alternatives are mutually exclusive over time, which is a questionable assumption. We introduced a new copula-based model (CO-CUB) for the transition probability, which can handle the dependent structure of best–worst choices while applying a very practical constraint. We used a conditional logit model to calculate the utility at consecutive time points and spread it to future time points under dynamic programming. We suggest that the CO-CUB transition probability algorithm is a novel way to analyze and predict choices in future time points by expressing human choice behavior. The numerical results inform decision making, help formulate strategy and learning algorithms under dynamic utility in time for best–worst DCEs.