模拟 Apriori 算法和 FP-Growth 算法确定库存交易中的项目编码建议

Purwita Sari, Lucky Indra Kesuma, Ahmad Fali Oklilas, M. Buchari
{"title":"模拟 Apriori 算法和 FP-Growth 算法确定库存交易中的项目编码建议","authors":"Purwita Sari, Lucky Indra Kesuma, Ahmad Fali Oklilas, M. Buchari","doi":"10.33022/ijcs.v13i1.3632","DOIUrl":null,"url":null,"abstract":"Keberhasilan proses pembangunan memerlukan dukungan optimal dalam pertukaran data dan informasi antar instansi guna mencapai integrasi sistem yang seimbang antara pemerintah dan para pengguna. SAKTI, sebuah aplikasi keuangan tingkat instansi, telah dirancang untuk mengelola segala aspek keuangan, mulai dari perencanaan hingga pertanggungjawaban anggaran. Aplikasi SAKTI ini mengintegrasikan semua aplikasi satuan kerja yang ada, bertujuan untuk meningkatkan efektivitas, efisiensi, transparansi, dan akuntabilitas dalam pengelolaan keuangan. Meskipun telah diimplementasikan sejak awal tahun 2022, operator komitmen masih menghadapi kendala dalam penentuan kodefikasi barang, terutama karena kurangnya familiaritas dengan tugas tersebut dan jumlah barang yang banyak sebagai referensi. Kesalahan yang dilakukan oleh operator komitmen dapat berdampak pada proses pendetailan aset pada modul persediaan dan aset. Dalam penelitian ini, peneliti menggunakan metode Algoritma Apriori dan frequent pattern growth (FP-growth) sebagai alat untuk menemukan sejumlah aturan asosiasi dari data transaksi barang yang disimpan dalam basis data aplikasi SAKTI. Hasil simulasi menunjukkan bahwa aturan yang memenuhi minimum support dan minimum confidence, dengan pemilihan terbanyak adalah Ballpoint Standar Tecno, refill tisu plastik, Lak Ban Hitam 2 Inchi Merk Daimaru, dan Ballpoint Kenko K1 (0,5) sebesar 100%. ","PeriodicalId":52855,"journal":{"name":"Indonesian Journal of Computer Science","volume":"260 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulasi Algoritma Apriori dan FP-Growth Dalam Menentukan Rekomendasi Kodefikasi Barang Pada Transaksi Persediaan\",\"authors\":\"Purwita Sari, Lucky Indra Kesuma, Ahmad Fali Oklilas, M. Buchari\",\"doi\":\"10.33022/ijcs.v13i1.3632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Keberhasilan proses pembangunan memerlukan dukungan optimal dalam pertukaran data dan informasi antar instansi guna mencapai integrasi sistem yang seimbang antara pemerintah dan para pengguna. SAKTI, sebuah aplikasi keuangan tingkat instansi, telah dirancang untuk mengelola segala aspek keuangan, mulai dari perencanaan hingga pertanggungjawaban anggaran. Aplikasi SAKTI ini mengintegrasikan semua aplikasi satuan kerja yang ada, bertujuan untuk meningkatkan efektivitas, efisiensi, transparansi, dan akuntabilitas dalam pengelolaan keuangan. Meskipun telah diimplementasikan sejak awal tahun 2022, operator komitmen masih menghadapi kendala dalam penentuan kodefikasi barang, terutama karena kurangnya familiaritas dengan tugas tersebut dan jumlah barang yang banyak sebagai referensi. Kesalahan yang dilakukan oleh operator komitmen dapat berdampak pada proses pendetailan aset pada modul persediaan dan aset. Dalam penelitian ini, peneliti menggunakan metode Algoritma Apriori dan frequent pattern growth (FP-growth) sebagai alat untuk menemukan sejumlah aturan asosiasi dari data transaksi barang yang disimpan dalam basis data aplikasi SAKTI. Hasil simulasi menunjukkan bahwa aturan yang memenuhi minimum support dan minimum confidence, dengan pemilihan terbanyak adalah Ballpoint Standar Tecno, refill tisu plastik, Lak Ban Hitam 2 Inchi Merk Daimaru, dan Ballpoint Kenko K1 (0,5) sebesar 100%. \",\"PeriodicalId\":52855,\"journal\":{\"name\":\"Indonesian Journal of Computer Science\",\"volume\":\"260 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33022/ijcs.v13i1.3632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33022/ijcs.v13i1.3632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发过程的成功需要各机构之间在数据和信息交换方面提供最佳支持,以实现政府与用户之间平衡的系统集成。SAKTI 是一个机构级财务应用程序,旨在管理从规划到预算问责的所有财务方面。SAKTI 应用程序整合了所有现有的工作单位应用程序,旨在提高财务管理的效力、效率、透明度和问责制。虽然自 2022 年初开始实施,但承付款操作员在确定货物编码方面仍面临障碍,主要原因是对这项任务不熟悉,而且有大量货物作为参考。承诺操作员所犯的错误会对库存和资产模块中的资产明细过程产生影响。在这项研究中,研究人员使用 Apriori 算法和频繁模式增长(FP-growth)方法作为工具,从存储在 SAKTI 应用数据库中的货物交易数据中找到了一些关联规则。模拟结果显示,符合最小支持度和最小置信度且得票最多的规则是 Tecno 标准圆珠笔、塑料纸巾笔芯、Daimaru 牌 2 英寸黑色轮胎拉克和 Kenko K1 圆珠笔(0.5),得票率均为 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulasi Algoritma Apriori dan FP-Growth Dalam Menentukan Rekomendasi Kodefikasi Barang Pada Transaksi Persediaan
Keberhasilan proses pembangunan memerlukan dukungan optimal dalam pertukaran data dan informasi antar instansi guna mencapai integrasi sistem yang seimbang antara pemerintah dan para pengguna. SAKTI, sebuah aplikasi keuangan tingkat instansi, telah dirancang untuk mengelola segala aspek keuangan, mulai dari perencanaan hingga pertanggungjawaban anggaran. Aplikasi SAKTI ini mengintegrasikan semua aplikasi satuan kerja yang ada, bertujuan untuk meningkatkan efektivitas, efisiensi, transparansi, dan akuntabilitas dalam pengelolaan keuangan. Meskipun telah diimplementasikan sejak awal tahun 2022, operator komitmen masih menghadapi kendala dalam penentuan kodefikasi barang, terutama karena kurangnya familiaritas dengan tugas tersebut dan jumlah barang yang banyak sebagai referensi. Kesalahan yang dilakukan oleh operator komitmen dapat berdampak pada proses pendetailan aset pada modul persediaan dan aset. Dalam penelitian ini, peneliti menggunakan metode Algoritma Apriori dan frequent pattern growth (FP-growth) sebagai alat untuk menemukan sejumlah aturan asosiasi dari data transaksi barang yang disimpan dalam basis data aplikasi SAKTI. Hasil simulasi menunjukkan bahwa aturan yang memenuhi minimum support dan minimum confidence, dengan pemilihan terbanyak adalah Ballpoint Standar Tecno, refill tisu plastik, Lak Ban Hitam 2 Inchi Merk Daimaru, dan Ballpoint Kenko K1 (0,5) sebesar 100%. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信