基于神经网络和运动模型预测的多目标跟踪框架

Tianyang Li
{"title":"基于神经网络和运动模型预测的多目标跟踪框架","authors":"Tianyang Li","doi":"10.61173/jpjpht67","DOIUrl":null,"url":null,"abstract":"Multi-target tracking technology is a key problem in many application areas, including robotics, video surveillance, and autonomous driving, and its purpose is to find tracking targets that match the characteristics in a continuous image or sensing sequence information and to form a reasonable trajectory for each target. This paper proposed a method that combines the two main existing approaches for multi-target tracking by applying the Kalman filter for motion model prediction to support the neural network target tracking under poor visibility and target shield.","PeriodicalId":438278,"journal":{"name":"Science and Technology of Engineering, Chemistry and Environmental Protection","volume":"18 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The framework of multi-target tracking based on neural network and motion model prediction\",\"authors\":\"Tianyang Li\",\"doi\":\"10.61173/jpjpht67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-target tracking technology is a key problem in many application areas, including robotics, video surveillance, and autonomous driving, and its purpose is to find tracking targets that match the characteristics in a continuous image or sensing sequence information and to form a reasonable trajectory for each target. This paper proposed a method that combines the two main existing approaches for multi-target tracking by applying the Kalman filter for motion model prediction to support the neural network target tracking under poor visibility and target shield.\",\"PeriodicalId\":438278,\"journal\":{\"name\":\"Science and Technology of Engineering, Chemistry and Environmental Protection\",\"volume\":\"18 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Engineering, Chemistry and Environmental Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61173/jpjpht67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Engineering, Chemistry and Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61173/jpjpht67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多目标跟踪技术是机器人、视频监控、自动驾驶等众多应用领域的关键问题,其目的是在连续的图像或传感序列信息中找到符合特征的跟踪目标,并为每个目标形成合理的轨迹。本文提出了一种结合现有两种主要方法的多目标跟踪方法,即应用卡尔曼滤波器进行运动模型预测,以支持能见度差和目标遮挡情况下的神经网络目标跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The framework of multi-target tracking based on neural network and motion model prediction
Multi-target tracking technology is a key problem in many application areas, including robotics, video surveillance, and autonomous driving, and its purpose is to find tracking targets that match the characteristics in a continuous image or sensing sequence information and to form a reasonable trajectory for each target. This paper proposed a method that combines the two main existing approaches for multi-target tracking by applying the Kalman filter for motion model prediction to support the neural network target tracking under poor visibility and target shield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信