基于蚁群算法的采茶机器人路径规划研究

Minghui Wu, Bo Gao, Heping Hu, Konglin Hong
{"title":"基于蚁群算法的采茶机器人路径规划研究","authors":"Minghui Wu, Bo Gao, Heping Hu, Konglin Hong","doi":"10.1177/00202940241228996","DOIUrl":null,"url":null,"abstract":"Robot tea picking is an inevitable trend to solve the problem of tea picking, and the picking path planning is directly related to the robot picking efficiency. An Improved Ant Colony Algorithm (IACA) is proposed, which firstly introduces the adaptive adjustment mechanism into the pheromone volatilization factor of the ant colony algorithm, and then sets the pheromone volatilization factor with a high initial value to improve the searching speed, and then adjusts the size of its value within a certain range in real time according to the iterative results, and finally solves the problem that the searching of the ant colony algorithm is prone to fall into the local optimal solution. On the basis of visual recognition of tea leaves and obtaining coordinate information, the improved ant colony algorithm is used to enter the path planning simulation experiments, and the planning results of the other six algorithms are compared with the similar algorithms and dissimilar algorithms, and the experimental results indicate that the IACA method has improved the shortest path index by 5% compared to the basic ant colony algorithm, and by an average of 4% compared to similar improved ant colony algorithms. In comparison to different optimization algorithms, the enhancement has an average increase of 6%; Furthermore, the convergence speed has been improved by 60% compared to six other methods. The standard deviation of repeated experimental results is 50% lower than the other six methods. The gap between the results of multiple repeated experiments is small, the degree of fluctuation is low, and the calculation results are more stable, which verifies the superiority of IACA method. Therefore, the improvement of the ant colony algorithm makes the pheromone concentration value with adaptive adjustment ability, which reflects good effects in path optimization, convergence speed improvement, stability of results, etc., and has good application value for the path planning problems such as tea picking, which has complex paths and large computational volume.","PeriodicalId":510299,"journal":{"name":"Measurement and Control","volume":"23 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on path planning of tea picking robot based on ant colony algorithm\",\"authors\":\"Minghui Wu, Bo Gao, Heping Hu, Konglin Hong\",\"doi\":\"10.1177/00202940241228996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot tea picking is an inevitable trend to solve the problem of tea picking, and the picking path planning is directly related to the robot picking efficiency. An Improved Ant Colony Algorithm (IACA) is proposed, which firstly introduces the adaptive adjustment mechanism into the pheromone volatilization factor of the ant colony algorithm, and then sets the pheromone volatilization factor with a high initial value to improve the searching speed, and then adjusts the size of its value within a certain range in real time according to the iterative results, and finally solves the problem that the searching of the ant colony algorithm is prone to fall into the local optimal solution. On the basis of visual recognition of tea leaves and obtaining coordinate information, the improved ant colony algorithm is used to enter the path planning simulation experiments, and the planning results of the other six algorithms are compared with the similar algorithms and dissimilar algorithms, and the experimental results indicate that the IACA method has improved the shortest path index by 5% compared to the basic ant colony algorithm, and by an average of 4% compared to similar improved ant colony algorithms. In comparison to different optimization algorithms, the enhancement has an average increase of 6%; Furthermore, the convergence speed has been improved by 60% compared to six other methods. The standard deviation of repeated experimental results is 50% lower than the other six methods. The gap between the results of multiple repeated experiments is small, the degree of fluctuation is low, and the calculation results are more stable, which verifies the superiority of IACA method. Therefore, the improvement of the ant colony algorithm makes the pheromone concentration value with adaptive adjustment ability, which reflects good effects in path optimization, convergence speed improvement, stability of results, etc., and has good application value for the path planning problems such as tea picking, which has complex paths and large computational volume.\",\"PeriodicalId\":510299,\"journal\":{\"name\":\"Measurement and Control\",\"volume\":\"23 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00202940241228996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00202940241228996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人采茶是解决茶叶采摘问题的必然趋势,而采摘路径规划直接关系到机器人的采摘效率。本文提出了一种改进的蚁群算法(IACA),首先在蚁群算法的信息素挥发因子中引入自适应调整机制,将信息素挥发因子设置为较高的初始值以提高搜索速度,然后根据迭代结果在一定范围内实时调整其值的大小,最终解决了蚁群算法搜索容易陷入局部最优解的问题。在对茶叶进行视觉识别并获取坐标信息的基础上,利用改进蚁群算法进入路径规划仿真实验,将其他六种算法的规划结果与同类算法、异类算法进行比较,实验结果表明,IACA方法的最短路径指数比基本蚁群算法提高了5%,比同类改进蚁群算法平均提高了4%。此外,与其他六种方法相比,收敛速度提高了 60%。重复实验结果的标准偏差比其他六种方法低 50%。多次重复实验结果差距小,波动程度低,计算结果更稳定,验证了 IACA 方法的优越性。因此,蚁群算法的改进使得信息素浓度值具有自适应调节能力,在路径优化、收敛速度提高、结果稳定性等方面体现出良好的效果,对于采茶等路径复杂、计算量大的路径规划问题具有很好的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on path planning of tea picking robot based on ant colony algorithm
Robot tea picking is an inevitable trend to solve the problem of tea picking, and the picking path planning is directly related to the robot picking efficiency. An Improved Ant Colony Algorithm (IACA) is proposed, which firstly introduces the adaptive adjustment mechanism into the pheromone volatilization factor of the ant colony algorithm, and then sets the pheromone volatilization factor with a high initial value to improve the searching speed, and then adjusts the size of its value within a certain range in real time according to the iterative results, and finally solves the problem that the searching of the ant colony algorithm is prone to fall into the local optimal solution. On the basis of visual recognition of tea leaves and obtaining coordinate information, the improved ant colony algorithm is used to enter the path planning simulation experiments, and the planning results of the other six algorithms are compared with the similar algorithms and dissimilar algorithms, and the experimental results indicate that the IACA method has improved the shortest path index by 5% compared to the basic ant colony algorithm, and by an average of 4% compared to similar improved ant colony algorithms. In comparison to different optimization algorithms, the enhancement has an average increase of 6%; Furthermore, the convergence speed has been improved by 60% compared to six other methods. The standard deviation of repeated experimental results is 50% lower than the other six methods. The gap between the results of multiple repeated experiments is small, the degree of fluctuation is low, and the calculation results are more stable, which verifies the superiority of IACA method. Therefore, the improvement of the ant colony algorithm makes the pheromone concentration value with adaptive adjustment ability, which reflects good effects in path optimization, convergence speed improvement, stability of results, etc., and has good application value for the path planning problems such as tea picking, which has complex paths and large computational volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信