中等大字段上低度多项式的最佳伪随机发生器

Ashish Dwivedi, Zeyu Guo, Ben lee Volk
{"title":"中等大字段上低度多项式的最佳伪随机发生器","authors":"Ashish Dwivedi, Zeyu Guo, Ben lee Volk","doi":"10.48550/arXiv.2402.11915","DOIUrl":null,"url":null,"abstract":"We construct explicit pseudorandom generators that fool $n$-variate polynomials of degree at most $d$ over a finite field $\\mathbb{F}_q$. The seed length of our generators is $O(d \\log n + \\log q)$, over fields of size exponential in $d$ and characteristic at least $d(d-1)+1$. Previous constructions such as Bogdanov's (STOC 2005) and Derksen and Viola's (FOCS 2022) had either suboptimal seed length or required the field size to depend on $n$. Our approach follows Bogdanov's paradigm while incorporating techniques from Lecerf's factorization algorithm (J. Symb. Comput. 2007) and insights from the construction of Derksen and Viola regarding the role of indecomposability of polynomials.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"28 24","pages":"TR24-028"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Pseudorandom Generators for Low-Degree Polynomials Over Moderately Large Fields\",\"authors\":\"Ashish Dwivedi, Zeyu Guo, Ben lee Volk\",\"doi\":\"10.48550/arXiv.2402.11915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct explicit pseudorandom generators that fool $n$-variate polynomials of degree at most $d$ over a finite field $\\\\mathbb{F}_q$. The seed length of our generators is $O(d \\\\log n + \\\\log q)$, over fields of size exponential in $d$ and characteristic at least $d(d-1)+1$. Previous constructions such as Bogdanov's (STOC 2005) and Derksen and Viola's (FOCS 2022) had either suboptimal seed length or required the field size to depend on $n$. Our approach follows Bogdanov's paradigm while incorporating techniques from Lecerf's factorization algorithm (J. Symb. Comput. 2007) and insights from the construction of Derksen and Viola regarding the role of indecomposability of polynomials.\",\"PeriodicalId\":11639,\"journal\":{\"name\":\"Electron. Colloquium Comput. Complex.\",\"volume\":\"28 24\",\"pages\":\"TR24-028\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Colloquium Comput. Complex.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.11915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.11915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了显式伪随机生成器,它可以在有限域 $\mathbb{F}_q$ 上愚弄度数最多为 $d$ 的 $n$ 变多项式。我们的生成器的种子长度为 $O(d\log n + \log q)$,在大小为 $d$ 的指数域上,特性至少为 $d(d-1)+1$。以前的构造,如 Bogdanov 的(STOC 2005)和 Derksen 与 Viola 的(FOCS 2022),要么种子长度不够理想,要么要求字段大小取决于 $n$。我们的方法沿用了 Bogdanov 的模式,同时结合了 Lecerf 因式分解算法(《符号计算杂志》,2007 年)中的技术,以及 Derksen 和 Viola 的构造中关于多项式不可分解性作用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Pseudorandom Generators for Low-Degree Polynomials Over Moderately Large Fields
We construct explicit pseudorandom generators that fool $n$-variate polynomials of degree at most $d$ over a finite field $\mathbb{F}_q$. The seed length of our generators is $O(d \log n + \log q)$, over fields of size exponential in $d$ and characteristic at least $d(d-1)+1$. Previous constructions such as Bogdanov's (STOC 2005) and Derksen and Viola's (FOCS 2022) had either suboptimal seed length or required the field size to depend on $n$. Our approach follows Bogdanov's paradigm while incorporating techniques from Lecerf's factorization algorithm (J. Symb. Comput. 2007) and insights from the construction of Derksen and Viola regarding the role of indecomposability of polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信