使用模糊参数对基本麻疹模型进行可行性和稳定性分析

H. A. Bhavithra, S. Sindu Devi
{"title":"使用模糊参数对基本麻疹模型进行可行性和稳定性分析","authors":"H. A. Bhavithra, S. Sindu Devi","doi":"10.37256/cm.5120242428","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the behaviors of the measles viral pandemic using fuzzy susceptible-infectiousrecovered (SIR) model. To examine the effects of various compartment phases, we analyze disease-free equilibrium points along with basic reproduction number. The measles model is stated to be globally asymptotically stable at the disease-free equilibrium point. In order to mathematically simulate the measles, we use a first-order nonlinear differential equation. The numerical solution is computed using the Runge-Kutta method, and the model’s feasibility is also covered.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility and Stability Analysis for Basic Measles Model Using Fuzzy Parameter\",\"authors\":\"H. A. Bhavithra, S. Sindu Devi\",\"doi\":\"10.37256/cm.5120242428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the behaviors of the measles viral pandemic using fuzzy susceptible-infectiousrecovered (SIR) model. To examine the effects of various compartment phases, we analyze disease-free equilibrium points along with basic reproduction number. The measles model is stated to be globally asymptotically stable at the disease-free equilibrium point. In order to mathematically simulate the measles, we use a first-order nonlinear differential equation. The numerical solution is computed using the Runge-Kutta method, and the model’s feasibility is also covered.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120242428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用模糊易感-传染性恢复(SIR)模型研究了麻疹病毒大流行的行为。为了研究不同分区阶段的影响,我们分析了无病平衡点和基本繁殖数。麻疹模型在无疾病平衡点上具有全局渐近稳定性。为了对麻疹进行数学模拟,我们使用了一阶非线性微分方程。我们使用 Runge-Kutta 方法计算了数值解,并讨论了模型的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility and Stability Analysis for Basic Measles Model Using Fuzzy Parameter
In this article, we investigate the behaviors of the measles viral pandemic using fuzzy susceptible-infectiousrecovered (SIR) model. To examine the effects of various compartment phases, we analyze disease-free equilibrium points along with basic reproduction number. The measles model is stated to be globally asymptotically stable at the disease-free equilibrium point. In order to mathematically simulate the measles, we use a first-order nonlinear differential equation. The numerical solution is computed using the Runge-Kutta method, and the model’s feasibility is also covered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信