引入的单输入单输出肿瘤模型的受控自动回归移动平均(CARMA)形式的控制与识别

Kiavash Hossein Sadeghi, Abohassan Razminia, Abolfazl Simorgh
{"title":"引入的单输入单输出肿瘤模型的受控自动回归移动平均(CARMA)形式的控制与识别","authors":"Kiavash Hossein Sadeghi, Abohassan Razminia, Abolfazl Simorgh","doi":"10.29121/ijetmr.v11.i2.2024.1403","DOIUrl":null,"url":null,"abstract":"The article investigates the parameter estimation for controlled auto-regressive moving average models with gradient based iterative approach and two-stage gradient based iterative approach. Since deriving a new model for tumor model is substantial, introduced system identification algorithms are used in order to estimate parameters of a specific nonlinear tumor model. Besides, in order to estimate tumor model a collection of output and input data is taken from the nonlinear system. Apart from that, effectiveness of the identification algorithms such as convergence rate and estimation error is depicted through various tables and figures. Finally, it is shown that the two stage approach has higher identification efficacy.","PeriodicalId":506692,"journal":{"name":"International Journal of Engineering Technologies and Management Research","volume":"83 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONTROL AND IDENTIFICATION OF CONTROLLED AUTO-REGRESSIVE MOVING AVERAGE (CARMA) FORM OF AN INTRODUCED SINGLE-INPUT SINGLE-OUTPUT TUMOR MODEL\",\"authors\":\"Kiavash Hossein Sadeghi, Abohassan Razminia, Abolfazl Simorgh\",\"doi\":\"10.29121/ijetmr.v11.i2.2024.1403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article investigates the parameter estimation for controlled auto-regressive moving average models with gradient based iterative approach and two-stage gradient based iterative approach. Since deriving a new model for tumor model is substantial, introduced system identification algorithms are used in order to estimate parameters of a specific nonlinear tumor model. Besides, in order to estimate tumor model a collection of output and input data is taken from the nonlinear system. Apart from that, effectiveness of the identification algorithms such as convergence rate and estimation error is depicted through various tables and figures. Finally, it is shown that the two stage approach has higher identification efficacy.\",\"PeriodicalId\":506692,\"journal\":{\"name\":\"International Journal of Engineering Technologies and Management Research\",\"volume\":\"83 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Technologies and Management Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29121/ijetmr.v11.i2.2024.1403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Technologies and Management Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29121/ijetmr.v11.i2.2024.1403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章采用基于梯度的迭代法和基于梯度的两阶段迭代法研究了受控自回归移动平均模型的参数估计。由于为肿瘤模型推导一个新模型非常重要,因此采用了引入的系统识别算法来估计特定非线性肿瘤模型的参数。此外,为了估计肿瘤模型,需要从非线性系统中收集输出和输入数据。此外,还通过各种表格和数字描述了识别算法的有效性,如收敛率和估计误差。最后表明,两阶段方法具有更高的识别效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONTROL AND IDENTIFICATION OF CONTROLLED AUTO-REGRESSIVE MOVING AVERAGE (CARMA) FORM OF AN INTRODUCED SINGLE-INPUT SINGLE-OUTPUT TUMOR MODEL
The article investigates the parameter estimation for controlled auto-regressive moving average models with gradient based iterative approach and two-stage gradient based iterative approach. Since deriving a new model for tumor model is substantial, introduced system identification algorithms are used in order to estimate parameters of a specific nonlinear tumor model. Besides, in order to estimate tumor model a collection of output and input data is taken from the nonlinear system. Apart from that, effectiveness of the identification algorithms such as convergence rate and estimation error is depicted through various tables and figures. Finally, it is shown that the two stage approach has higher identification efficacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信