GlórIA:葡萄牙语的生成和开放式大型语言模型

Ricardo Lopes, João Magalhães, David Semedo
{"title":"GlórIA:葡萄牙语的生成和开放式大型语言模型","authors":"Ricardo Lopes, João Magalhães, David Semedo","doi":"10.48550/arXiv.2402.12969","DOIUrl":null,"url":null,"abstract":"Significant strides have been made in natural language tasks, largely attributed to the emergence of powerful large language models (LLMs). These models, pre-trained on extensive and diverse corpora, have become increasingly capable of comprehending the intricacies of language. Despite the abundance of LLMs for many high-resource languages, the availability of such models remains limited for European Portuguese. We introduce Gl\\'orIA, a robust European Portuguese decoder LLM. To pre-train Gl\\'orIA, we assembled a comprehensive PT-PT text corpus comprising 35 billion tokens from various sources. We present our pre-training methodology, followed by an assessment of the model's effectiveness on multiple downstream tasks. Additionally, to evaluate our models' language modeling capabilities, we introduce CALAME-PT (Context-Aware LAnguage Modeling Evaluation for Portuguese), the first Portuguese zero-shot language-modeling benchmark. Evaluation shows that Gl\\'orIA significantly outperforms existing open PT decoder models in language modeling and that it can generate sound, knowledge-rich, and coherent PT-PT text. The model also exhibits strong potential for various downstream tasks.","PeriodicalId":291757,"journal":{"name":"International Conference on Computational Processing of the Portuguese Language","volume":"85 7","pages":"441-453"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GlórIA: A Generative and Open Large Language Model for Portuguese\",\"authors\":\"Ricardo Lopes, João Magalhães, David Semedo\",\"doi\":\"10.48550/arXiv.2402.12969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant strides have been made in natural language tasks, largely attributed to the emergence of powerful large language models (LLMs). These models, pre-trained on extensive and diverse corpora, have become increasingly capable of comprehending the intricacies of language. Despite the abundance of LLMs for many high-resource languages, the availability of such models remains limited for European Portuguese. We introduce Gl\\\\'orIA, a robust European Portuguese decoder LLM. To pre-train Gl\\\\'orIA, we assembled a comprehensive PT-PT text corpus comprising 35 billion tokens from various sources. We present our pre-training methodology, followed by an assessment of the model's effectiveness on multiple downstream tasks. Additionally, to evaluate our models' language modeling capabilities, we introduce CALAME-PT (Context-Aware LAnguage Modeling Evaluation for Portuguese), the first Portuguese zero-shot language-modeling benchmark. Evaluation shows that Gl\\\\'orIA significantly outperforms existing open PT decoder models in language modeling and that it can generate sound, knowledge-rich, and coherent PT-PT text. The model also exhibits strong potential for various downstream tasks.\",\"PeriodicalId\":291757,\"journal\":{\"name\":\"International Conference on Computational Processing of the Portuguese Language\",\"volume\":\"85 7\",\"pages\":\"441-453\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computational Processing of the Portuguese Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.12969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computational Processing of the Portuguese Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.12969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然语言任务取得了长足进步,这主要归功于功能强大的大型语言模型(LLM)的出现。这些模型在广泛而多样的语料库中经过预先训练,理解语言复杂性的能力越来越强。尽管许多高资源语言都有大量的 LLM,但对于欧洲葡萄牙语来说,此类模型的可用性仍然有限。我们介绍了一种强大的欧洲葡萄牙语解码器 LLM--Gl\'orIA。为了对 Gl\'orIA 进行预训练,我们建立了一个全面的 PT-PT 文本语料库,该语料库由来自不同来源的 350 亿个词块组成。我们介绍了预训练方法,随后评估了模型在多个下游任务中的有效性。此外,为了评估我们的模型的语言建模能力,我们引入了 CALAME-PT(葡萄牙语语境感知语言建模评估),这是首个葡萄牙语零点语言建模基准。评估结果表明,Gl\'orIA 在语言建模方面明显优于现有的开放式葡萄牙语解码器模型,它可以生成完善、知识丰富和连贯的葡萄牙语 PT-PT 文本。该模型在各种下游任务中也表现出强大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GlórIA: A Generative and Open Large Language Model for Portuguese
Significant strides have been made in natural language tasks, largely attributed to the emergence of powerful large language models (LLMs). These models, pre-trained on extensive and diverse corpora, have become increasingly capable of comprehending the intricacies of language. Despite the abundance of LLMs for many high-resource languages, the availability of such models remains limited for European Portuguese. We introduce Gl\'orIA, a robust European Portuguese decoder LLM. To pre-train Gl\'orIA, we assembled a comprehensive PT-PT text corpus comprising 35 billion tokens from various sources. We present our pre-training methodology, followed by an assessment of the model's effectiveness on multiple downstream tasks. Additionally, to evaluate our models' language modeling capabilities, we introduce CALAME-PT (Context-Aware LAnguage Modeling Evaluation for Portuguese), the first Portuguese zero-shot language-modeling benchmark. Evaluation shows that Gl\'orIA significantly outperforms existing open PT decoder models in language modeling and that it can generate sound, knowledge-rich, and coherent PT-PT text. The model also exhibits strong potential for various downstream tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信