{"title":"基于模糊逻辑 Type-2 的转弯驱动法开发轮式仿人机器人运动位置控制系统","authors":"B. Suprapto, Suci Dwijayanti, D. Amri","doi":"10.5755/j02.eie.35912","DOIUrl":null,"url":null,"abstract":"A humanoid robot is capable of mimicking human movements, which poses a challenge for researchers. This has led some to utilise wheels to facilitate its motion. However, achieving smooth and accurate movements at desired positions remains a challenge, necessitating the development of an optimal control system and movement method. In this study, solutions to address these challenges include the use of type-2 fuzzy logic controller (FLC) and the swerve drive method. During the steering rotation movement testing, type-1 FLC exhibits the fastest response time of 0.8 seconds, but oscillations occur, reaching up to 117 degrees to achieve the set point of 90 degrees. Additionally, type-1 FLC cannot reach the set point of -90 degrees. On the contrary, type-2 FLC aligns successfully with both set points of 90 and -90 degrees. In coordinate movement testing, type-1 FLC still shows an error between 1 cm and 2 cm compared to type-2 FLC, particularly with 3 and 5 members, which are equal to the given set point. The results of the tests indicate that type-2 FLC is reliable, showing a small steady-state error, stability, and no overshoot, despite its longer response time and processing duration compared to type-1 FLC.","PeriodicalId":507694,"journal":{"name":"Elektronika ir Elektrotechnika","volume":"356 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Position Control System for Wheeled Humanoid Robot Movement Using the Swerve Drive Method Based on Fuzzy Logic Type-2\",\"authors\":\"B. Suprapto, Suci Dwijayanti, D. Amri\",\"doi\":\"10.5755/j02.eie.35912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A humanoid robot is capable of mimicking human movements, which poses a challenge for researchers. This has led some to utilise wheels to facilitate its motion. However, achieving smooth and accurate movements at desired positions remains a challenge, necessitating the development of an optimal control system and movement method. In this study, solutions to address these challenges include the use of type-2 fuzzy logic controller (FLC) and the swerve drive method. During the steering rotation movement testing, type-1 FLC exhibits the fastest response time of 0.8 seconds, but oscillations occur, reaching up to 117 degrees to achieve the set point of 90 degrees. Additionally, type-1 FLC cannot reach the set point of -90 degrees. On the contrary, type-2 FLC aligns successfully with both set points of 90 and -90 degrees. In coordinate movement testing, type-1 FLC still shows an error between 1 cm and 2 cm compared to type-2 FLC, particularly with 3 and 5 members, which are equal to the given set point. The results of the tests indicate that type-2 FLC is reliable, showing a small steady-state error, stability, and no overshoot, despite its longer response time and processing duration compared to type-1 FLC.\",\"PeriodicalId\":507694,\"journal\":{\"name\":\"Elektronika ir Elektrotechnika\",\"volume\":\"356 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika ir Elektrotechnika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.35912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika ir Elektrotechnika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.eie.35912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Position Control System for Wheeled Humanoid Robot Movement Using the Swerve Drive Method Based on Fuzzy Logic Type-2
A humanoid robot is capable of mimicking human movements, which poses a challenge for researchers. This has led some to utilise wheels to facilitate its motion. However, achieving smooth and accurate movements at desired positions remains a challenge, necessitating the development of an optimal control system and movement method. In this study, solutions to address these challenges include the use of type-2 fuzzy logic controller (FLC) and the swerve drive method. During the steering rotation movement testing, type-1 FLC exhibits the fastest response time of 0.8 seconds, but oscillations occur, reaching up to 117 degrees to achieve the set point of 90 degrees. Additionally, type-1 FLC cannot reach the set point of -90 degrees. On the contrary, type-2 FLC aligns successfully with both set points of 90 and -90 degrees. In coordinate movement testing, type-1 FLC still shows an error between 1 cm and 2 cm compared to type-2 FLC, particularly with 3 and 5 members, which are equal to the given set point. The results of the tests indicate that type-2 FLC is reliable, showing a small steady-state error, stability, and no overshoot, despite its longer response time and processing duration compared to type-1 FLC.