基于 CNN 和 GRU 的视觉语言多模态融合技术,用于扫地机器人导航

Yiping Zhang, Kolja Wilker
{"title":"基于 CNN 和 GRU 的视觉语言多模态融合技术,用于扫地机器人导航","authors":"Yiping Zhang, Kolja Wilker","doi":"10.4018/joeuc.338388","DOIUrl":null,"url":null,"abstract":"Effectively fusing information between the visual and language modalities remains a significant challenge. To achieve deep integration of natural language and visual information, this research introduces a multimodal fusion neural network model, which combines visual information (RGB images and depth maps) with language information (natural language navigation instructions). Firstly, the authors used faster R-CNN and ResNet50 to extract image features and attention mechanism to further extract effective information. Secondly, GRU model is used to extract language features. Finally, another GRU model is used to fuse the visual- language features, and then the history information is retained to give the next action instruction to the robot. Experimental results demonstrate that the proposed method effectively addresses the localization and decision-making challenges for robotic vacuum cleaners.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual-and-Language Multimodal Fusion for Sweeping Robot Navigation Based on CNN and GRU\",\"authors\":\"Yiping Zhang, Kolja Wilker\",\"doi\":\"10.4018/joeuc.338388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effectively fusing information between the visual and language modalities remains a significant challenge. To achieve deep integration of natural language and visual information, this research introduces a multimodal fusion neural network model, which combines visual information (RGB images and depth maps) with language information (natural language navigation instructions). Firstly, the authors used faster R-CNN and ResNet50 to extract image features and attention mechanism to further extract effective information. Secondly, GRU model is used to extract language features. Finally, another GRU model is used to fuse the visual- language features, and then the history information is retained to give the next action instruction to the robot. Experimental results demonstrate that the proposed method effectively addresses the localization and decision-making challenges for robotic vacuum cleaners.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.338388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.338388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有效融合视觉和语言模式之间的信息仍然是一项重大挑战。为了实现自然语言与视觉信息的深度融合,本研究引入了多模态融合神经网络模型,将视觉信息(RGB 图像和深度图)与语言信息(自然语言导航指令)相结合。首先,作者利用速度更快的 R-CNN 和 ResNet50 提取图像特征,并利用注意力机制进一步提取有效信息。其次,使用 GRU 模型提取语言特征。最后,使用另一个 GRU 模型融合视觉和语言特征,然后保留历史信息,向机器人发出下一个行动指令。实验结果表明,所提出的方法有效地解决了机器人吸尘器的定位和决策难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual-and-Language Multimodal Fusion for Sweeping Robot Navigation Based on CNN and GRU
Effectively fusing information between the visual and language modalities remains a significant challenge. To achieve deep integration of natural language and visual information, this research introduces a multimodal fusion neural network model, which combines visual information (RGB images and depth maps) with language information (natural language navigation instructions). Firstly, the authors used faster R-CNN and ResNet50 to extract image features and attention mechanism to further extract effective information. Secondly, GRU model is used to extract language features. Finally, another GRU model is used to fuse the visual- language features, and then the history information is retained to give the next action instruction to the robot. Experimental results demonstrate that the proposed method effectively addresses the localization and decision-making challenges for robotic vacuum cleaners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信