Kui Wang;Zongdian Li;Kazuma Nonomura;Tao Yu;Kei Sakaguchi;Omar Hashash;Walid Saad
{"title":"基于数字双胞胎的智能交通自动车辆导航系统:概念验证","authors":"Kui Wang;Zongdian Li;Kazuma Nonomura;Tao Yu;Kei Sakaguchi;Omar Hashash;Walid Saad","doi":"10.1109/TIV.2024.3368109","DOIUrl":null,"url":null,"abstract":"Digital twins (DTs) have driven major advancements across various industrial domains over the past two decades. With the rapid advancements in autonomous driving and vehicle-to-everything (V2X) technologies, integrating DTs into vehicular platforms is anticipated to further revolutionize smart mobility systems. In this paper, a new smart mobility DT (SMDT) platform is proposed for the control of connected and automated vehicles (CAVs) over next-generation wireless networks. In particular, the proposed platform enables cloud services to leverage the abilities of DTs to promote the autonomous driving experience. To enhance traffic efficiency and road safety measures, a novel navigation system that exploits available DT information is designed. The SMDT platform and navigation system are implemented with state-of-the-art products, e.g., CAVs and roadside units (RSUs), and emerging technologies, e.g., cloud and cellular V2X (C-V2X). In addition, proof-of-concept (PoC) experiments are conducted to validate system performance. The performance of SMDT is evaluated from two standpoints: (i) the rewards of the proposed navigation system on traffic efficiency and safety and, (ii) the latency and reliability of the SMDT platform. Our experimental results using SUMO-based large-scale traffic simulations show that the proposed SMDT can reduce the average travel time and the blocking probability due to unexpected traffic incidents. Furthermore, the results record a peak overall latency for DT modeling and route planning services to be 155.15 ms and 810.59 ms, respectively, which validates that our proposed design aligns with the 3GPP requirements for emerging V2X use cases and fulfills the targets of the proposed design.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 3","pages":"4348-4361"},"PeriodicalIF":14.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10443037","citationCount":"0","resultStr":"{\"title\":\"Smart Mobility Digital Twin Based Automated Vehicle Navigation System: A Proof of Concept\",\"authors\":\"Kui Wang;Zongdian Li;Kazuma Nonomura;Tao Yu;Kei Sakaguchi;Omar Hashash;Walid Saad\",\"doi\":\"10.1109/TIV.2024.3368109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital twins (DTs) have driven major advancements across various industrial domains over the past two decades. With the rapid advancements in autonomous driving and vehicle-to-everything (V2X) technologies, integrating DTs into vehicular platforms is anticipated to further revolutionize smart mobility systems. In this paper, a new smart mobility DT (SMDT) platform is proposed for the control of connected and automated vehicles (CAVs) over next-generation wireless networks. In particular, the proposed platform enables cloud services to leverage the abilities of DTs to promote the autonomous driving experience. To enhance traffic efficiency and road safety measures, a novel navigation system that exploits available DT information is designed. The SMDT platform and navigation system are implemented with state-of-the-art products, e.g., CAVs and roadside units (RSUs), and emerging technologies, e.g., cloud and cellular V2X (C-V2X). In addition, proof-of-concept (PoC) experiments are conducted to validate system performance. The performance of SMDT is evaluated from two standpoints: (i) the rewards of the proposed navigation system on traffic efficiency and safety and, (ii) the latency and reliability of the SMDT platform. Our experimental results using SUMO-based large-scale traffic simulations show that the proposed SMDT can reduce the average travel time and the blocking probability due to unexpected traffic incidents. Furthermore, the results record a peak overall latency for DT modeling and route planning services to be 155.15 ms and 810.59 ms, respectively, which validates that our proposed design aligns with the 3GPP requirements for emerging V2X use cases and fulfills the targets of the proposed design.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"9 3\",\"pages\":\"4348-4361\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10443037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10443037/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10443037/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Smart Mobility Digital Twin Based Automated Vehicle Navigation System: A Proof of Concept
Digital twins (DTs) have driven major advancements across various industrial domains over the past two decades. With the rapid advancements in autonomous driving and vehicle-to-everything (V2X) technologies, integrating DTs into vehicular platforms is anticipated to further revolutionize smart mobility systems. In this paper, a new smart mobility DT (SMDT) platform is proposed for the control of connected and automated vehicles (CAVs) over next-generation wireless networks. In particular, the proposed platform enables cloud services to leverage the abilities of DTs to promote the autonomous driving experience. To enhance traffic efficiency and road safety measures, a novel navigation system that exploits available DT information is designed. The SMDT platform and navigation system are implemented with state-of-the-art products, e.g., CAVs and roadside units (RSUs), and emerging technologies, e.g., cloud and cellular V2X (C-V2X). In addition, proof-of-concept (PoC) experiments are conducted to validate system performance. The performance of SMDT is evaluated from two standpoints: (i) the rewards of the proposed navigation system on traffic efficiency and safety and, (ii) the latency and reliability of the SMDT platform. Our experimental results using SUMO-based large-scale traffic simulations show that the proposed SMDT can reduce the average travel time and the blocking probability due to unexpected traffic incidents. Furthermore, the results record a peak overall latency for DT modeling and route planning services to be 155.15 ms and 810.59 ms, respectively, which validates that our proposed design aligns with the 3GPP requirements for emerging V2X use cases and fulfills the targets of the proposed design.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.