Magesh M, P.K. Jawahar, Saranya S.N., Raj Jawahar R
{"title":"蜘蛛猴元启发式调整模型预测控制与无人机新型辅助着陆脚的着陆稳定性","authors":"Magesh M, P.K. Jawahar, Saranya S.N., Raj Jawahar R","doi":"10.5755/j02.eie.34343","DOIUrl":null,"url":null,"abstract":"The study focuses on improving drone landing gear dynamics through an innovative auxetic foot design, leveraging Spider Monkey Optimization for Model Predictive Control adjustment, facilitated by an Arduino-MATLAB interface. The auxetic foot design incorporates materials with a negative Poisson ratio, which allows the foot to expand and enhance energy absorption during landings. This design improves stability and safety during the perched landing process. The SMO-MPC approach is used to optimise the control of the perched landing gear. SMO, inspired by spider monkey search behaviour, optimises auxetic foot control input sequences with the limits of rotational displacement (theta = 30 deg to -30 deg) on the prediction horizon to improve landing gear performance. The real-time implementation of SMO-MPC is achieved through an Arduino-MATLAB interface on quadcopter drone. A comparative analysis is conducted to evaluate the benefits of SMO-MPC compared to conventional MPC methods. The results show that the SMO-MPC approach with auxetic foot design surpasses conventional MPC methods in terms of landing performance with 14.6 % improvement in damping force control and control of aerodynamic stability with pitch of 34.16 %, yaw of 16.87 %, and roll of 31.74 %.","PeriodicalId":507694,"journal":{"name":"Elektronika ir Elektrotechnika","volume":"458 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spider Monkey Metaheuristic Tuning of Model Predictive Control with Perched Landing Stabilities for Novel Auxetic Landing Foot in Drones\",\"authors\":\"Magesh M, P.K. Jawahar, Saranya S.N., Raj Jawahar R\",\"doi\":\"10.5755/j02.eie.34343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study focuses on improving drone landing gear dynamics through an innovative auxetic foot design, leveraging Spider Monkey Optimization for Model Predictive Control adjustment, facilitated by an Arduino-MATLAB interface. The auxetic foot design incorporates materials with a negative Poisson ratio, which allows the foot to expand and enhance energy absorption during landings. This design improves stability and safety during the perched landing process. The SMO-MPC approach is used to optimise the control of the perched landing gear. SMO, inspired by spider monkey search behaviour, optimises auxetic foot control input sequences with the limits of rotational displacement (theta = 30 deg to -30 deg) on the prediction horizon to improve landing gear performance. The real-time implementation of SMO-MPC is achieved through an Arduino-MATLAB interface on quadcopter drone. A comparative analysis is conducted to evaluate the benefits of SMO-MPC compared to conventional MPC methods. The results show that the SMO-MPC approach with auxetic foot design surpasses conventional MPC methods in terms of landing performance with 14.6 % improvement in damping force control and control of aerodynamic stability with pitch of 34.16 %, yaw of 16.87 %, and roll of 31.74 %.\",\"PeriodicalId\":507694,\"journal\":{\"name\":\"Elektronika ir Elektrotechnika\",\"volume\":\"458 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika ir Elektrotechnika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.34343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika ir Elektrotechnika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.eie.34343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spider Monkey Metaheuristic Tuning of Model Predictive Control with Perched Landing Stabilities for Novel Auxetic Landing Foot in Drones
The study focuses on improving drone landing gear dynamics through an innovative auxetic foot design, leveraging Spider Monkey Optimization for Model Predictive Control adjustment, facilitated by an Arduino-MATLAB interface. The auxetic foot design incorporates materials with a negative Poisson ratio, which allows the foot to expand and enhance energy absorption during landings. This design improves stability and safety during the perched landing process. The SMO-MPC approach is used to optimise the control of the perched landing gear. SMO, inspired by spider monkey search behaviour, optimises auxetic foot control input sequences with the limits of rotational displacement (theta = 30 deg to -30 deg) on the prediction horizon to improve landing gear performance. The real-time implementation of SMO-MPC is achieved through an Arduino-MATLAB interface on quadcopter drone. A comparative analysis is conducted to evaluate the benefits of SMO-MPC compared to conventional MPC methods. The results show that the SMO-MPC approach with auxetic foot design surpasses conventional MPC methods in terms of landing performance with 14.6 % improvement in damping force control and control of aerodynamic stability with pitch of 34.16 %, yaw of 16.87 %, and roll of 31.74 %.