基于深度神经网络的聚乙烯醇闪烁探测器核素识别算法

Hiep Cao, Tien Hung Dinh, Kim Chien Dinh, Thi Thoa Nguyen, D. Pham, X. H. Nguyen
{"title":"基于深度神经网络的聚乙烯醇闪烁探测器核素识别算法","authors":"Hiep Cao, Tien Hung Dinh, Kim Chien Dinh, Thi Thoa Nguyen, D. Pham, X. H. Nguyen","doi":"10.53747/nst.v12i4.347","DOIUrl":null,"url":null,"abstract":"Radiation portal monitors (RPMs) are now stationed at strategic areas (airports, ports, etc.) to identify the illegal transportation of radioactive sources and nuclear items. RPMs are typically fitted with a PVT detector with a high recording efficiency. Radioisotope identification from the gamma spectrum acquired on this detector is normally not regarded due to the low resolution. This research describes an artificial neural network-based isotope identification algorithm that was applied to the gamma spectrum collected from the RPM's PVT detector. With excellent precision, this approach can detect one or a mixture of isotopes on the spectrum. The model still recognizes the training isotopes with >89 percent accuracy for spectra with the gain displacement in the range of 20 percent.","PeriodicalId":19445,"journal":{"name":"Nuclear Science and Technology","volume":"998 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclide identification algorithm for Polyvinyl Toluene scintillation detector based on Deep Neural Network\",\"authors\":\"Hiep Cao, Tien Hung Dinh, Kim Chien Dinh, Thi Thoa Nguyen, D. Pham, X. H. Nguyen\",\"doi\":\"10.53747/nst.v12i4.347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiation portal monitors (RPMs) are now stationed at strategic areas (airports, ports, etc.) to identify the illegal transportation of radioactive sources and nuclear items. RPMs are typically fitted with a PVT detector with a high recording efficiency. Radioisotope identification from the gamma spectrum acquired on this detector is normally not regarded due to the low resolution. This research describes an artificial neural network-based isotope identification algorithm that was applied to the gamma spectrum collected from the RPM's PVT detector. With excellent precision, this approach can detect one or a mixture of isotopes on the spectrum. The model still recognizes the training isotopes with >89 percent accuracy for spectra with the gain displacement in the range of 20 percent.\",\"PeriodicalId\":19445,\"journal\":{\"name\":\"Nuclear Science and Technology\",\"volume\":\"998 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53747/nst.v12i4.347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53747/nst.v12i4.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现在,辐射门户监测器(RPMs)驻扎在战略要地(机场、港口等),以识别放射源和核物品的非法运输。RPM 通常装有一个记录效率很高的 PVT 探测器。由于分辨率较低,通常无法从该探测器获得的伽马能谱中识别放射性同位素。本研究介绍了一种基于人工神经网络的同位素识别算法,该算法应用于从 RPM 的 PVT 探测器采集的伽马能谱。这种方法具有极高的精确度,可以检测到光谱上的一种或多种同位素。对于增益位移在 20% 范围内的光谱,该模型识别训练同位素的准确率仍大于 89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclide identification algorithm for Polyvinyl Toluene scintillation detector based on Deep Neural Network
Radiation portal monitors (RPMs) are now stationed at strategic areas (airports, ports, etc.) to identify the illegal transportation of radioactive sources and nuclear items. RPMs are typically fitted with a PVT detector with a high recording efficiency. Radioisotope identification from the gamma spectrum acquired on this detector is normally not regarded due to the low resolution. This research describes an artificial neural network-based isotope identification algorithm that was applied to the gamma spectrum collected from the RPM's PVT detector. With excellent precision, this approach can detect one or a mixture of isotopes on the spectrum. The model still recognizes the training isotopes with >89 percent accuracy for spectra with the gain displacement in the range of 20 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信