Mengchuan Cao, Dan Wu, Pengxuan Du, Ting Zhang, Sina Ahmadi
{"title":"考虑局部和全局特征,动态识别复杂网络中的重要节点","authors":"Mengchuan Cao, Dan Wu, Pengxuan Du, Ting Zhang, Sina Ahmadi","doi":"10.1093/comnet/cnae015","DOIUrl":null,"url":null,"abstract":"\n By combining centrality measures and community detection, a better insight into the nature of the evolution of important nodes in complex networks is obtained. Meanwhile, the dynamic identification of important nodes in complex networks can be enhanced by considering both local and global characteristics. Local characteristics focus on the immediate connections and interactions of a node within its neighbourhood, while global characteristics take into account the overall structure and dynamics of the entire network. Nodes with high local centrality in dynamic networks may play crucial roles in local information spreading or influence. On the global level, community detection algorithms have a significant impact on the overall network structure and connectivity between important nodes. Hence, integrating both local and global characteristics offers a more comprehensive understanding of how nodes dynamically contribute to the functioning of complex networks. For more comprehensive analysis of complex networks, this article identifies important nodes by considering local and global characteristics (INLGC). For local characteristic, INLGC develops a centrality measure based on network constraint coefficient, which can provide a better understanding of the relationship between neighbouring nodes. For global characteristic, INLGC develops a community detection method to improve the resolution of ranking important nodes. Extensive experiments have been conducted on several real-world datasets and various performance metrics have been evaluated based on the susceptible–infected–recovered model. The simulation results show that INLGC provides more competitive advantages in precision and resolution.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic identification of important nodes in complex networks by considering local and global characteristics\",\"authors\":\"Mengchuan Cao, Dan Wu, Pengxuan Du, Ting Zhang, Sina Ahmadi\",\"doi\":\"10.1093/comnet/cnae015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n By combining centrality measures and community detection, a better insight into the nature of the evolution of important nodes in complex networks is obtained. Meanwhile, the dynamic identification of important nodes in complex networks can be enhanced by considering both local and global characteristics. Local characteristics focus on the immediate connections and interactions of a node within its neighbourhood, while global characteristics take into account the overall structure and dynamics of the entire network. Nodes with high local centrality in dynamic networks may play crucial roles in local information spreading or influence. On the global level, community detection algorithms have a significant impact on the overall network structure and connectivity between important nodes. Hence, integrating both local and global characteristics offers a more comprehensive understanding of how nodes dynamically contribute to the functioning of complex networks. For more comprehensive analysis of complex networks, this article identifies important nodes by considering local and global characteristics (INLGC). For local characteristic, INLGC develops a centrality measure based on network constraint coefficient, which can provide a better understanding of the relationship between neighbouring nodes. For global characteristic, INLGC develops a community detection method to improve the resolution of ranking important nodes. Extensive experiments have been conducted on several real-world datasets and various performance metrics have been evaluated based on the susceptible–infected–recovered model. The simulation results show that INLGC provides more competitive advantages in precision and resolution.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnae015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnae015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Dynamic identification of important nodes in complex networks by considering local and global characteristics
By combining centrality measures and community detection, a better insight into the nature of the evolution of important nodes in complex networks is obtained. Meanwhile, the dynamic identification of important nodes in complex networks can be enhanced by considering both local and global characteristics. Local characteristics focus on the immediate connections and interactions of a node within its neighbourhood, while global characteristics take into account the overall structure and dynamics of the entire network. Nodes with high local centrality in dynamic networks may play crucial roles in local information spreading or influence. On the global level, community detection algorithms have a significant impact on the overall network structure and connectivity between important nodes. Hence, integrating both local and global characteristics offers a more comprehensive understanding of how nodes dynamically contribute to the functioning of complex networks. For more comprehensive analysis of complex networks, this article identifies important nodes by considering local and global characteristics (INLGC). For local characteristic, INLGC develops a centrality measure based on network constraint coefficient, which can provide a better understanding of the relationship between neighbouring nodes. For global characteristic, INLGC develops a community detection method to improve the resolution of ranking important nodes. Extensive experiments have been conducted on several real-world datasets and various performance metrics have been evaluated based on the susceptible–infected–recovered model. The simulation results show that INLGC provides more competitive advantages in precision and resolution.
期刊介绍:
Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network