可整流度量空间的典型 Lipschitz 映像

David Bate, Jakub Takáč
{"title":"可整流度量空间的典型 Lipschitz 映像","authors":"David Bate, Jakub Takáč","doi":"10.1515/crelle-2024-0004","DOIUrl":null,"url":null,"abstract":"\n <jats:p>This article studies typical 1-Lipschitz images of 𝑛-rectifiable metric spaces 𝐸 into <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mi>m</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0001.png\" />\n <jats:tex-math>\\mathbb{R}^{m}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> for <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>m</m:mi>\n <m:mo>≥</m:mo>\n <m:mi>n</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0002.png\" />\n <jats:tex-math>m\\geq n</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.\nFor example, if <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>E</m:mi>\n <m:mo>⊂</m:mo>\n <m:msup>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mi>k</m:mi>\n </m:msup>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0003.png\" />\n <jats:tex-math>E\\subset\\mathbb{R}^{k}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, we show that the Jacobian of such a typical 1-Lipschitz map equals 1 <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"script\">H</m:mi>\n <m:mi>n</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0004.png\" />\n <jats:tex-math>\\mathcal{H}^{n}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-almost everywhere and, if <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>m</m:mi>\n <m:mo>></m:mo>\n <m:mi>n</m:mi>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0005.png\" />\n <jats:tex-math>m>n</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, preserves the Hausdorff measure of 𝐸.\nIn general, we provide sufficient conditions, in terms of the tangent norms of 𝐸, for when a typical 1-Lipschitz map preserves the Hausdorff measure of 𝐸, up to some constant multiple.\nAlmost optimal results for strongly 𝑛-rectifiable metric spaces are obtained.\nOn the other hand, for any norm <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n <m:mo>⋅</m:mo>\n <m:mo stretchy=\"false\">|</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0006.png\" />\n <jats:tex-math>\\lvert\\,{\\cdot}\\,\\rvert</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> on <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mi>m</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0001.png\" />\n <jats:tex-math>\\mathbb{R}^{m}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, we show that, in the space of 1-Lipschitz functions from <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mrow>\n <m:mo stretchy=\"false\">[</m:mo>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mo>,</m:mo>\n <m:mn>1</m:mn>\n <m:mo stretchy=\"false\">]</m:mo>\n </m:mrow>\n <m:mi>n</m:mi>\n </m:msup>\n <m:mo>,</m:mo>\n <m:msub>\n <m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n <m:mo>⋅</m:mo>\n <m:mo stretchy=\"false\">|</m:mo>\n </m:mrow>\n <m:mi mathvariant=\"normal\">∞</m:mi>\n </m:msub>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0008.png\" />\n <jats:tex-math>([-1,1]^{n},\\lvert\\,{\\cdot}\\,\\rvert_{\\infty})</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> to <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msup>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n <m:mi>m</m:mi>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n <m:mo>⋅</m:mo>\n <m:mo stretchy=\"false\">|</m:mo>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0009.png\" />\n <jats:tex-math>(\\mathbb{R}^{m},\\lvert\\,{\\cdot}\\,\\rvert)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, the <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mi mathvariant=\"script\">H</m:mi>\n <m:mi>n</m:mi>\n </m:msup>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0004.png\" />\n <jats:tex-math>\\mathcal{H}^{n}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-measure of a typical image is not bounded below by any <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0004_ineq_0011.png\" />\n <jats:tex-math>\\Delta>0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"12 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Typical Lipschitz images of rectifiable metric spaces\",\"authors\":\"David Bate, Jakub Takáč\",\"doi\":\"10.1515/crelle-2024-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>This article studies typical 1-Lipschitz images of 𝑛-rectifiable metric spaces 𝐸 into <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n <m:mi>m</m:mi>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0001.png\\\" />\\n <jats:tex-math>\\\\mathbb{R}^{m}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> for <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>m</m:mi>\\n <m:mo>≥</m:mo>\\n <m:mi>n</m:mi>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0002.png\\\" />\\n <jats:tex-math>m\\\\geq n</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>.\\nFor example, if <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>E</m:mi>\\n <m:mo>⊂</m:mo>\\n <m:msup>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n <m:mi>k</m:mi>\\n </m:msup>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0003.png\\\" />\\n <jats:tex-math>E\\\\subset\\\\mathbb{R}^{k}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, we show that the Jacobian of such a typical 1-Lipschitz map equals 1 <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi mathvariant=\\\"script\\\">H</m:mi>\\n <m:mi>n</m:mi>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0004.png\\\" />\\n <jats:tex-math>\\\\mathcal{H}^{n}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-almost everywhere and, if <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>m</m:mi>\\n <m:mo>></m:mo>\\n <m:mi>n</m:mi>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0005.png\\\" />\\n <jats:tex-math>m>n</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, preserves the Hausdorff measure of 𝐸.\\nIn general, we provide sufficient conditions, in terms of the tangent norms of 𝐸, for when a typical 1-Lipschitz map preserves the Hausdorff measure of 𝐸, up to some constant multiple.\\nAlmost optimal results for strongly 𝑛-rectifiable metric spaces are obtained.\\nOn the other hand, for any norm <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">|</m:mo>\\n <m:mo>⋅</m:mo>\\n <m:mo stretchy=\\\"false\\\">|</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0006.png\\\" />\\n <jats:tex-math>\\\\lvert\\\\,{\\\\cdot}\\\\,\\\\rvert</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> on <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n <m:mi>m</m:mi>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0001.png\\\" />\\n <jats:tex-math>\\\\mathbb{R}^{m}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, we show that, in the space of 1-Lipschitz functions from <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">[</m:mo>\\n <m:mrow>\\n <m:mo>−</m:mo>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mo>,</m:mo>\\n <m:mn>1</m:mn>\\n <m:mo stretchy=\\\"false\\\">]</m:mo>\\n </m:mrow>\\n <m:mi>n</m:mi>\\n </m:msup>\\n <m:mo>,</m:mo>\\n <m:msub>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">|</m:mo>\\n <m:mo>⋅</m:mo>\\n <m:mo stretchy=\\\"false\\\">|</m:mo>\\n </m:mrow>\\n <m:mi mathvariant=\\\"normal\\\">∞</m:mi>\\n </m:msub>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0008.png\\\" />\\n <jats:tex-math>([-1,1]^{n},\\\\lvert\\\\,{\\\\cdot}\\\\,\\\\rvert_{\\\\infty})</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> to <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:msup>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n <m:mi>m</m:mi>\\n </m:msup>\\n <m:mo>,</m:mo>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">|</m:mo>\\n <m:mo>⋅</m:mo>\\n <m:mo stretchy=\\\"false\\\">|</m:mo>\\n </m:mrow>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0009.png\\\" />\\n <jats:tex-math>(\\\\mathbb{R}^{m},\\\\lvert\\\\,{\\\\cdot}\\\\,\\\\rvert)</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, the <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mi mathvariant=\\\"script\\\">H</m:mi>\\n <m:mi>n</m:mi>\\n </m:msup>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0004.png\\\" />\\n <jats:tex-math>\\\\mathcal{H}^{n}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-measure of a typical image is not bounded below by any <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0004_ineq_0011.png\\\" />\\n <jats:tex-math>\\\\Delta>0</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":508691,\"journal\":{\"name\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2024-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

例如,如果 E ⊂ R k E\subset\mathbb{R}^{k} ,我们会发现这样一个典型的 1-Lipschitz 映射的 Jacobian 几乎在所有地方都等于 1 H n \mathcal{H}^{n} -,并且如果 m > n m>n ,则 1 Lipschitz 映射的 Jacobian 几乎在所有地方都等于 1 H n \mathcal{H}^{n} -。 我们证明,这样一个典型的 1-Lipschitz 映射的 Jacobian 几乎在所有地方都等于 1 H n \mathcal{H}^{n} ,并且,如果 m > n m>n ,会保留𝐸的 Hausdorff 度量。一般来说,我们从𝐸的切线规范出发,提供了典型的1-Lipschitz映射保留𝐸的Hausdorff度量的充分条件,直至某个常数倍数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Typical Lipschitz images of rectifiable metric spaces
This article studies typical 1-Lipschitz images of 𝑛-rectifiable metric spaces 𝐸 into R m \mathbb{R}^{m} for m n m\geq n . For example, if E R k E\subset\mathbb{R}^{k} , we show that the Jacobian of such a typical 1-Lipschitz map equals 1 H n \mathcal{H}^{n} -almost everywhere and, if m > n m>n , preserves the Hausdorff measure of 𝐸. In general, we provide sufficient conditions, in terms of the tangent norms of 𝐸, for when a typical 1-Lipschitz map preserves the Hausdorff measure of 𝐸, up to some constant multiple. Almost optimal results for strongly 𝑛-rectifiable metric spaces are obtained. On the other hand, for any norm | | \lvert\,{\cdot}\,\rvert on R m \mathbb{R}^{m} , we show that, in the space of 1-Lipschitz functions from ( [ 1 , 1 ] n , | | ) ([-1,1]^{n},\lvert\,{\cdot}\,\rvert_{\infty}) to ( R m , | | ) (\mathbb{R}^{m},\lvert\,{\cdot}\,\rvert) , the H n \mathcal{H}^{n} -measure of a typical image is not bounded below by any Δ > 0 \Delta>0 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信