使用支持向量机 (SVM) 方法预测家庭令牌电量的电力负荷 (W)

Andika Dwi cahyo, Sri Anardani, Yoga Prisma Yuda
{"title":"使用支持向量机 (SVM) 方法预测家庭令牌电量的电力负荷 (W)","authors":"Andika Dwi cahyo, Sri Anardani, Yoga Prisma Yuda","doi":"10.47233/jsit.v4i1.1543","DOIUrl":null,"url":null,"abstract":"Electricity is an essential need that cannot be separated from daily human life, especially in the modern era where many devices require electrical energy. The demand for electrical energy is increasing over time, thus the electricity providers must have sufficient capacity to meet the demand. However, there is still a lot of wasted energy due to the mismatch between the demand and the supplied amount of electricity, leading to significant electricity wastage. In this regard, appropriate calculations are needed to determine the amount of electrical power required, hence the need for a prediction method to determine the required power in real-time. The Support Vector Machine method is expected to predict the electrical load accurately, enabling users to determine the required load for the next period. It is hoped that this prediction will achieve an accuracy rate above 85%.","PeriodicalId":477238,"journal":{"name":"Jurnal Sains dan Teknologi (JSIT)","volume":"26 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediksi Beban Daya Listrik (W) Menggunakan Metode Support Vector Machine (SVM) Pada Listrik Token Rumah Tangga\",\"authors\":\"Andika Dwi cahyo, Sri Anardani, Yoga Prisma Yuda\",\"doi\":\"10.47233/jsit.v4i1.1543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electricity is an essential need that cannot be separated from daily human life, especially in the modern era where many devices require electrical energy. The demand for electrical energy is increasing over time, thus the electricity providers must have sufficient capacity to meet the demand. However, there is still a lot of wasted energy due to the mismatch between the demand and the supplied amount of electricity, leading to significant electricity wastage. In this regard, appropriate calculations are needed to determine the amount of electrical power required, hence the need for a prediction method to determine the required power in real-time. The Support Vector Machine method is expected to predict the electrical load accurately, enabling users to determine the required load for the next period. It is hoped that this prediction will achieve an accuracy rate above 85%.\",\"PeriodicalId\":477238,\"journal\":{\"name\":\"Jurnal Sains dan Teknologi (JSIT)\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sains dan Teknologi (JSIT)\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.47233/jsit.v4i1.1543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sains dan Teknologi (JSIT)","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.47233/jsit.v4i1.1543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力是人类日常生活中不可或缺的必需品,尤其是在现代社会,许多设备都需要电能。随着时间的推移,人们对电能的需求越来越大,因此电力供应商必须有足够的能力来满足需求。然而,由于电力需求量与供应量不匹配,仍有大量能源被浪费,导致电力浪费严重。在这方面,需要进行适当的计算来确定所需电量,因此需要一种预测方法来实时确定所需电量。支持向量机方法有望准确预测电力负荷,使用户能够确定下一时期的所需负荷。希望这一预测的准确率能达到 85%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediksi Beban Daya Listrik (W) Menggunakan Metode Support Vector Machine (SVM) Pada Listrik Token Rumah Tangga
Electricity is an essential need that cannot be separated from daily human life, especially in the modern era where many devices require electrical energy. The demand for electrical energy is increasing over time, thus the electricity providers must have sufficient capacity to meet the demand. However, there is still a lot of wasted energy due to the mismatch between the demand and the supplied amount of electricity, leading to significant electricity wastage. In this regard, appropriate calculations are needed to determine the amount of electrical power required, hence the need for a prediction method to determine the required power in real-time. The Support Vector Machine method is expected to predict the electrical load accurately, enabling users to determine the required load for the next period. It is hoped that this prediction will achieve an accuracy rate above 85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信