韦尔代数的小度弱多项式等式

Q3 Mathematics
Artem Lopatin, Carlos Arturo Rodriguez Palma, Liming Tang
{"title":"韦尔代数的小度弱多项式等式","authors":"Artem Lopatin, Carlos Arturo Rodriguez Palma, Liming Tang","doi":"10.46298/cm.13107","DOIUrl":null,"url":null,"abstract":"In this paper we investigate weak polynomial identities for the Weyl algebra\n$\\mathsf{A}_1$ over an infinite field of arbitrary characteristic. Namely, we\ndescribe weak polynomial identities of the minimal degree, which is three, and\nof degrees 4 and 5. We also describe weak polynomial identities is two\nvariables.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":"49 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak polynomial identities of small degree for the Weyl algebra\",\"authors\":\"Artem Lopatin, Carlos Arturo Rodriguez Palma, Liming Tang\",\"doi\":\"10.46298/cm.13107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate weak polynomial identities for the Weyl algebra\\n$\\\\mathsf{A}_1$ over an infinite field of arbitrary characteristic. Namely, we\\ndescribe weak polynomial identities of the minimal degree, which is three, and\\nof degrees 4 and 5. We also describe weak polynomial identities is two\\nvariables.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":\"49 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.13107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.13107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了任意特征的无穷域上的韦尔代数$mathsf{A}_1$的弱多项式等式。也就是说,我们描述了最小度(即 3 度)以及 4 度和 5 度的弱多项式等价性。我们还描述了两个变量的弱多项式同余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak polynomial identities of small degree for the Weyl algebra
In this paper we investigate weak polynomial identities for the Weyl algebra $\mathsf{A}_1$ over an infinite field of arbitrary characteristic. Namely, we describe weak polynomial identities of the minimal degree, which is three, and of degrees 4 and 5. We also describe weak polynomial identities is two variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信