{"title":"应用多点 Secant 类型方法查找非线性方程的根","authors":"R. Thukral","doi":"10.24297/jam.v23i.9588","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a family of pk-order iterative schemes for finding the simple root of a nonlinear algebraic equation of the function fx=0 by using the divided difference approximation. The proposed method uses one evaluation of the function per iteration and can achieve convergence order pk. The error equation and asymptotic convergence constant are proved theoretically and numerically. Numerical examples are included to demonstrate the exceptional convergence speed of the proposed method and thus verify the theoretical results","PeriodicalId":502930,"journal":{"name":"JOURNAL OF ADVANCES IN MATHEMATICS","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application Of Multipoint Secant-Type Method ForFinding Roots 0f Nonlinear Equations\",\"authors\":\"R. Thukral\",\"doi\":\"10.24297/jam.v23i.9588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a family of pk-order iterative schemes for finding the simple root of a nonlinear algebraic equation of the function fx=0 by using the divided difference approximation. The proposed method uses one evaluation of the function per iteration and can achieve convergence order pk. The error equation and asymptotic convergence constant are proved theoretically and numerically. Numerical examples are included to demonstrate the exceptional convergence speed of the proposed method and thus verify the theoretical results\",\"PeriodicalId\":502930,\"journal\":{\"name\":\"JOURNAL OF ADVANCES IN MATHEMATICS\",\"volume\":\"14 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF ADVANCES IN MATHEMATICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24297/jam.v23i.9588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF ADVANCES IN MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/jam.v23i.9588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application Of Multipoint Secant-Type Method ForFinding Roots 0f Nonlinear Equations
In this paper, we introduce a family of pk-order iterative schemes for finding the simple root of a nonlinear algebraic equation of the function fx=0 by using the divided difference approximation. The proposed method uses one evaluation of the function per iteration and can achieve convergence order pk. The error equation and asymptotic convergence constant are proved theoretically and numerically. Numerical examples are included to demonstrate the exceptional convergence speed of the proposed method and thus verify the theoretical results