应用多点 Secant 类型方法查找非线性方程的根

R. Thukral
{"title":"应用多点 Secant 类型方法查找非线性方程的根","authors":"R. Thukral","doi":"10.24297/jam.v23i.9588","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a family of pk-order iterative schemes for finding the simple root of a nonlinear algebraic equation of the function fx=0 by using the divided difference approximation. The proposed method uses one evaluation of the function per iteration and can achieve convergence order pk. The error equation and asymptotic convergence constant are proved theoretically and numerically. Numerical examples are included to demonstrate the exceptional convergence speed of the proposed method and thus verify the theoretical results","PeriodicalId":502930,"journal":{"name":"JOURNAL OF ADVANCES IN MATHEMATICS","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application Of Multipoint Secant-Type Method ForFinding Roots 0f Nonlinear Equations\",\"authors\":\"R. Thukral\",\"doi\":\"10.24297/jam.v23i.9588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a family of pk-order iterative schemes for finding the simple root of a nonlinear algebraic equation of the function fx=0 by using the divided difference approximation. The proposed method uses one evaluation of the function per iteration and can achieve convergence order pk. The error equation and asymptotic convergence constant are proved theoretically and numerically. Numerical examples are included to demonstrate the exceptional convergence speed of the proposed method and thus verify the theoretical results\",\"PeriodicalId\":502930,\"journal\":{\"name\":\"JOURNAL OF ADVANCES IN MATHEMATICS\",\"volume\":\"14 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF ADVANCES IN MATHEMATICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24297/jam.v23i.9588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF ADVANCES IN MATHEMATICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24297/jam.v23i.9588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一个 pk 阶迭代方案族,利用分差逼近法求非线性代数方程的函数 fx=0 的简根。所提出的方法每次迭代只需对函数进行一次求值,并能达到 pk 阶收敛。理论和数值证明了误差方程和渐近收敛常数。还通过数值示例证明了所提方法的超常收敛速度,从而验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application Of Multipoint Secant-Type Method ForFinding Roots 0f Nonlinear Equations
In this paper, we introduce a family of pk-order iterative schemes for finding the simple root of a nonlinear algebraic equation of the function fx=0 by using the divided difference approximation. The proposed method uses one evaluation of the function per iteration and can achieve convergence order pk. The error equation and asymptotic convergence constant are proved theoretically and numerically. Numerical examples are included to demonstrate the exceptional convergence speed of the proposed method and thus verify the theoretical results
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信