具有非适应性安全性的伪随机单元体

Tony Metger, Alexander Poremba, Makrand Sinha, Henry Yuen
{"title":"具有非适应性安全性的伪随机单元体","authors":"Tony Metger, Alexander Poremba, Makrand Sinha, Henry Yuen","doi":"10.48550/arXiv.2402.14803","DOIUrl":null,"url":null,"abstract":"Pseudorandom unitaries (PRUs) are ensembles of efficiently implementable unitary operators that cannot be distinguished from Haar random unitaries by any quantum polynomial-time algorithm with query access to the unitary. We present a simple PRU construction that is a concatenation of a random Clifford unitary, a pseudorandom binary phase operator, and a pseudorandom permutation operator. We prove that this PRU construction is secure against non-adaptive distinguishers assuming the existence of quantum-secure one-way functions. This means that no efficient quantum query algorithm that is allowed a single application of $U^{\\otimes \\mathrm{poly}(n)}$ can distinguish whether an $n$-qubit unitary $U$ was drawn from the Haar measure or our PRU ensemble. We conjecture that our PRU construction remains secure against adaptive distinguishers, i.e. secure against distinguishers that can query the unitary polynomially many times in sequence, not just in parallel.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"20 5","pages":"302"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pseudorandom unitaries with non-adaptive security\",\"authors\":\"Tony Metger, Alexander Poremba, Makrand Sinha, Henry Yuen\",\"doi\":\"10.48550/arXiv.2402.14803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pseudorandom unitaries (PRUs) are ensembles of efficiently implementable unitary operators that cannot be distinguished from Haar random unitaries by any quantum polynomial-time algorithm with query access to the unitary. We present a simple PRU construction that is a concatenation of a random Clifford unitary, a pseudorandom binary phase operator, and a pseudorandom permutation operator. We prove that this PRU construction is secure against non-adaptive distinguishers assuming the existence of quantum-secure one-way functions. This means that no efficient quantum query algorithm that is allowed a single application of $U^{\\\\otimes \\\\mathrm{poly}(n)}$ can distinguish whether an $n$-qubit unitary $U$ was drawn from the Haar measure or our PRU ensemble. We conjecture that our PRU construction remains secure against adaptive distinguishers, i.e. secure against distinguishers that can query the unitary polynomially many times in sequence, not just in parallel.\",\"PeriodicalId\":508905,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"20 5\",\"pages\":\"302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2402.14803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2402.14803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

伪随机单元(PRUs)是可高效实现的单元算子的集合,任何量子多项式时间算法都无法通过查询访问单元来将其与哈尔随机单元区分开来。我们提出了一种简单的 PRU 结构,它是随机克利福德单元、伪随机二进制相算子和伪随机置换算子的组合。我们证明,假定存在量子安全单向函数,这种 PRU 结构对非自适应区分器是安全的。这意味着,任何允许单次应用 $U^{\otimes \mathrm{poly}(n)}$ 的高效量子查询算法都无法区分 $n$-qubit 单元 $U$ 是来自哈量还是我们的 PRU 集合。我们猜想,我们的PRU构造在对抗自适应区分器时仍然是安全的,也就是说,在对抗那些可以依次多项式地多次查询单元的区分器时是安全的,而不仅仅是并行查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudorandom unitaries with non-adaptive security
Pseudorandom unitaries (PRUs) are ensembles of efficiently implementable unitary operators that cannot be distinguished from Haar random unitaries by any quantum polynomial-time algorithm with query access to the unitary. We present a simple PRU construction that is a concatenation of a random Clifford unitary, a pseudorandom binary phase operator, and a pseudorandom permutation operator. We prove that this PRU construction is secure against non-adaptive distinguishers assuming the existence of quantum-secure one-way functions. This means that no efficient quantum query algorithm that is allowed a single application of $U^{\otimes \mathrm{poly}(n)}$ can distinguish whether an $n$-qubit unitary $U$ was drawn from the Haar measure or our PRU ensemble. We conjecture that our PRU construction remains secure against adaptive distinguishers, i.e. secure against distinguishers that can query the unitary polynomially many times in sequence, not just in parallel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信