实施和测试 U 型空间系统:经验教训

M. Fas-Millán, Andreas Pick, Daniel González del Río, Alejandro Paniagua Tineo, Rubén García García
{"title":"实施和测试 U 型空间系统:经验教训","authors":"M. Fas-Millán, Andreas Pick, Daniel González del Río, Alejandro Paniagua Tineo, Rubén García García","doi":"10.3390/aerospace11030178","DOIUrl":null,"url":null,"abstract":"Within the framework of the European Union’s Horizon 2020 research and innovation program, one of the main goals of the Labyrinth project was to develop and test the Conflict Management services of a U-space-based Unmanned Traffic Management (UTM) system. The U-space concept of operations (ConOps) provides a high-level description of the architecture, requirements and functionalities of these systems, but the implementer has a certain degree of freedom in aspects like the techniques used or some policies and procedures. The current document describes some of those implementation decisions. The prototype included part of the services defined by the ConOps, namely e-identification, Tracking, Geo-awareness, Drone Aeronautical Information Management, Geo-fence Provision, Operation Plan Preparation/Optimization, Operation Plan Processing, Strategic Conflict Resolution, Tactical Conflict Resolution, Emergency Management, Monitoring, Traffic Information and Legal Recording. Moreover, a Web app interface was developed for the operator/pilot. The system was tested in simulations and real visual line of sight (VLOS) and beyond VLOS (BVLOS) flights, with both vertical take-off and landing (VTOL) and fixed-wing platforms, while assisting final users interested in incorporating drones to support their tasks. The development and testing of the environment provided lessons at different levels: functionalities, compatibility, procedures, information, usability, ground control station (GCS) integration and aircrew roles.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"42 03‐04","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementing and Testing a U-Space System: Lessons Learnt\",\"authors\":\"M. Fas-Millán, Andreas Pick, Daniel González del Río, Alejandro Paniagua Tineo, Rubén García García\",\"doi\":\"10.3390/aerospace11030178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the framework of the European Union’s Horizon 2020 research and innovation program, one of the main goals of the Labyrinth project was to develop and test the Conflict Management services of a U-space-based Unmanned Traffic Management (UTM) system. The U-space concept of operations (ConOps) provides a high-level description of the architecture, requirements and functionalities of these systems, but the implementer has a certain degree of freedom in aspects like the techniques used or some policies and procedures. The current document describes some of those implementation decisions. The prototype included part of the services defined by the ConOps, namely e-identification, Tracking, Geo-awareness, Drone Aeronautical Information Management, Geo-fence Provision, Operation Plan Preparation/Optimization, Operation Plan Processing, Strategic Conflict Resolution, Tactical Conflict Resolution, Emergency Management, Monitoring, Traffic Information and Legal Recording. Moreover, a Web app interface was developed for the operator/pilot. The system was tested in simulations and real visual line of sight (VLOS) and beyond VLOS (BVLOS) flights, with both vertical take-off and landing (VTOL) and fixed-wing platforms, while assisting final users interested in incorporating drones to support their tasks. The development and testing of the environment provided lessons at different levels: functionalities, compatibility, procedures, information, usability, ground control station (GCS) integration and aircrew roles.\",\"PeriodicalId\":505273,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"42 03‐04\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11030178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/aerospace11030178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在欧盟 "地平线 2020 "研究与创新计划框架内,"迷宫 "项目的主要目标之一是开发和测试基于 U 空间的无人交通管理(UTM)系统的冲突管理服务。U-space 行动概念(ConOps)对这些系统的结构、要求和功能进行了高层次的描述,但实施者在使用技术或某些政策和程序等方面有一定的自由度。本文件介绍了其中的一些实施决策。原型包括 ConOps 定义的部分服务,即电子身份识别、跟踪、地理感知、无人机航空信息管理、地理围栏提供、运行计划准备/优化、运行计划处理、战略冲突解决、战术冲突解决、应急管理、监控、交通信息和法律记录。此外,还为操作员/飞行员开发了一个网络应用程序界面。该系统通过垂直起降(VTOL)和固定翼平台进行了模拟和实际视距(VLOS)和超视距(BVLOS)飞行测试,同时为有兴趣使用无人机支持其任务的最终用户提供帮助。该环境的开发和测试提供了不同层面的经验教训:功能、兼容性、程序、信息、可用性、地面控制站(GCS)集成和机组人员角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing and Testing a U-Space System: Lessons Learnt
Within the framework of the European Union’s Horizon 2020 research and innovation program, one of the main goals of the Labyrinth project was to develop and test the Conflict Management services of a U-space-based Unmanned Traffic Management (UTM) system. The U-space concept of operations (ConOps) provides a high-level description of the architecture, requirements and functionalities of these systems, but the implementer has a certain degree of freedom in aspects like the techniques used or some policies and procedures. The current document describes some of those implementation decisions. The prototype included part of the services defined by the ConOps, namely e-identification, Tracking, Geo-awareness, Drone Aeronautical Information Management, Geo-fence Provision, Operation Plan Preparation/Optimization, Operation Plan Processing, Strategic Conflict Resolution, Tactical Conflict Resolution, Emergency Management, Monitoring, Traffic Information and Legal Recording. Moreover, a Web app interface was developed for the operator/pilot. The system was tested in simulations and real visual line of sight (VLOS) and beyond VLOS (BVLOS) flights, with both vertical take-off and landing (VTOL) and fixed-wing platforms, while assisting final users interested in incorporating drones to support their tasks. The development and testing of the environment provided lessons at different levels: functionalities, compatibility, procedures, information, usability, ground control station (GCS) integration and aircrew roles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信