故障分析的新方法

Sergei Alexandrov, Marina I. Rynkovskaya, Ismet Bajmuratov, Ruslan Kalistratov, Ivan Pylkin
{"title":"故障分析的新方法","authors":"Sergei Alexandrov, Marina I. Rynkovskaya, Ismet Bajmuratov, Ruslan Kalistratov, Ivan Pylkin","doi":"10.15625/2525-2518/18622","DOIUrl":null,"url":null,"abstract":"The present paper develops a new failure analysis method under plane strain conditions considering a generalized linear yield criterion. The yield criterion and the stress equilibrium equations constitute a hyperbolic system of equations. It is shown that two auxiliary variables satisfy the equation of telegraphy. Simple analytical relationships connect these variables and the radii of curvature of the characteristic curves. The calculated radii of curvature allow for the corresponding characteristic net to be constructed. Then, the stress field is determined using another set of analytical relationships. Thus, a numerical procedure is only necessary for solving the equation of telegraphy. This equation can be integrated by the method of Riemann. In particular, Green’s function is the Bessel function of zero order. A simple example illustrates the general method.","PeriodicalId":23553,"journal":{"name":"Vietnam Journal of Science and Technology","volume":"23 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new method of failure analysis\",\"authors\":\"Sergei Alexandrov, Marina I. Rynkovskaya, Ismet Bajmuratov, Ruslan Kalistratov, Ivan Pylkin\",\"doi\":\"10.15625/2525-2518/18622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper develops a new failure analysis method under plane strain conditions considering a generalized linear yield criterion. The yield criterion and the stress equilibrium equations constitute a hyperbolic system of equations. It is shown that two auxiliary variables satisfy the equation of telegraphy. Simple analytical relationships connect these variables and the radii of curvature of the characteristic curves. The calculated radii of curvature allow for the corresponding characteristic net to be constructed. Then, the stress field is determined using another set of analytical relationships. Thus, a numerical procedure is only necessary for solving the equation of telegraphy. This equation can be integrated by the method of Riemann. In particular, Green’s function is the Bessel function of zero order. A simple example illustrates the general method.\",\"PeriodicalId\":23553,\"journal\":{\"name\":\"Vietnam Journal of Science and Technology\",\"volume\":\"23 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/2525-2518/18622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/2525-2518/18622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到广义线性屈服准则,本文开发了一种平面应变条件下的新失效分析方法。屈服准则和应力平衡方程构成双曲方程组。研究表明,两个辅助变量满足电报方程。这些变量与特征曲线曲率半径之间存在简单的分析关系。通过计算曲率半径,可以构建相应的特征网。然后,利用另一组分析关系确定应力场。因此,只有在求解电报方程时才需要数字程序。该方程可通过黎曼法进行积分。特别是,格林函数是零阶贝塞尔函数。一个简单的例子说明了一般方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method of failure analysis
The present paper develops a new failure analysis method under plane strain conditions considering a generalized linear yield criterion. The yield criterion and the stress equilibrium equations constitute a hyperbolic system of equations. It is shown that two auxiliary variables satisfy the equation of telegraphy. Simple analytical relationships connect these variables and the radii of curvature of the characteristic curves. The calculated radii of curvature allow for the corresponding characteristic net to be constructed. Then, the stress field is determined using another set of analytical relationships. Thus, a numerical procedure is only necessary for solving the equation of telegraphy. This equation can be integrated by the method of Riemann. In particular, Green’s function is the Bessel function of zero order. A simple example illustrates the general method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信