{"title":"对闪电成像传感器探测性能的贝叶斯分析","authors":"K. Virts, Timothy J. Lang, D. Buechler, P. Bitzer","doi":"10.1175/jtech-d-23-0090.1","DOIUrl":null,"url":null,"abstract":"\nIdentical Lightning Imaging Sensors aboard the Tropical Rainfall Measuring Mission satellite (TRMM LIS, 1998–2015) and International Space Station (ISS LIS, 2017–present) have provided over two decades of lightning observations over the global tropics, with ISS LIS extending coverage into the mid-latitudes. Quantifying the detection performance of both LIS sensors is a necessary step toward generating a combined LIS climatological record and accurately combining LIS data with lightning detections from other sensors and networks. We compare lightning observations from both LIS sensors with reference sources including the Geostationary Lightning Mapper (GLM) and ground-based Earth Networks Total Lightning Network (ENTLN), Earth Networks Global Lightning Network (ENGLN), National Lightning Detection Network (NLDN), and Global Lightning Dataset (GLD360). Instead of a relative detection efficiency (DE) approach that assumes perfect performance of the reference sensor, we employ a Bayesian approach to estimate the upper limit of the absolute DE (ADE) of each system being analyzed. The results of this analysis illustrate the geographical pattern of ADE as well as its diurnal cycle and yearly evolution. Reference network ADE increased by ~15–30% during the TRMM era, leading to a decline in TRMM LIS ADE. ISS LIS flash ADE has been relatively consistent at 61–65%, about 4–5% lower than TRMM LIS at the end of its lifetime.","PeriodicalId":507668,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian analysis of the detection performance of the Lightning Imaging Sensors\",\"authors\":\"K. Virts, Timothy J. Lang, D. Buechler, P. Bitzer\",\"doi\":\"10.1175/jtech-d-23-0090.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nIdentical Lightning Imaging Sensors aboard the Tropical Rainfall Measuring Mission satellite (TRMM LIS, 1998–2015) and International Space Station (ISS LIS, 2017–present) have provided over two decades of lightning observations over the global tropics, with ISS LIS extending coverage into the mid-latitudes. Quantifying the detection performance of both LIS sensors is a necessary step toward generating a combined LIS climatological record and accurately combining LIS data with lightning detections from other sensors and networks. We compare lightning observations from both LIS sensors with reference sources including the Geostationary Lightning Mapper (GLM) and ground-based Earth Networks Total Lightning Network (ENTLN), Earth Networks Global Lightning Network (ENGLN), National Lightning Detection Network (NLDN), and Global Lightning Dataset (GLD360). Instead of a relative detection efficiency (DE) approach that assumes perfect performance of the reference sensor, we employ a Bayesian approach to estimate the upper limit of the absolute DE (ADE) of each system being analyzed. The results of this analysis illustrate the geographical pattern of ADE as well as its diurnal cycle and yearly evolution. Reference network ADE increased by ~15–30% during the TRMM era, leading to a decline in TRMM LIS ADE. ISS LIS flash ADE has been relatively consistent at 61–65%, about 4–5% lower than TRMM LIS at the end of its lifetime.\",\"PeriodicalId\":507668,\"journal\":{\"name\":\"Journal of Atmospheric and Oceanic Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Oceanic Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jtech-d-23-0090.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jtech-d-23-0090.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian analysis of the detection performance of the Lightning Imaging Sensors
Identical Lightning Imaging Sensors aboard the Tropical Rainfall Measuring Mission satellite (TRMM LIS, 1998–2015) and International Space Station (ISS LIS, 2017–present) have provided over two decades of lightning observations over the global tropics, with ISS LIS extending coverage into the mid-latitudes. Quantifying the detection performance of both LIS sensors is a necessary step toward generating a combined LIS climatological record and accurately combining LIS data with lightning detections from other sensors and networks. We compare lightning observations from both LIS sensors with reference sources including the Geostationary Lightning Mapper (GLM) and ground-based Earth Networks Total Lightning Network (ENTLN), Earth Networks Global Lightning Network (ENGLN), National Lightning Detection Network (NLDN), and Global Lightning Dataset (GLD360). Instead of a relative detection efficiency (DE) approach that assumes perfect performance of the reference sensor, we employ a Bayesian approach to estimate the upper limit of the absolute DE (ADE) of each system being analyzed. The results of this analysis illustrate the geographical pattern of ADE as well as its diurnal cycle and yearly evolution. Reference network ADE increased by ~15–30% during the TRMM era, leading to a decline in TRMM LIS ADE. ISS LIS flash ADE has been relatively consistent at 61–65%, about 4–5% lower than TRMM LIS at the end of its lifetime.