旅游旅行规划中的路线推荐优化:文献研究

A. Ramdani, D. Widyantoro, Rinaldi Munir
{"title":"旅游旅行规划中的路线推荐优化:文献研究","authors":"A. Ramdani, D. Widyantoro, Rinaldi Munir","doi":"10.57152/malcom.v4i2.1213","DOIUrl":null,"url":null,"abstract":"Tourist trip design problems (TTDP) merupakan permasalahan yang berkaitan dengan bidang pariwisata. TTDP berkaitan dengan perencanaan pengguna dalam melakukan perjalanan wisata berdasarkan pada tempat wisata yang menarik. Dalam sistem rekomendasi, TTDP merupakan permasalahan yang menarik. Hal ini karena tidak hanya digunakan untuk menemukan tempat wisata yang sesuai dengan pengguna, tetapi juga untuk menggabungkan tempat wisata ke dalam rute perjalanan yang praktis dengan mempertimbangkan batasan. Pada artikel ini bertujuan menyajikan penelitian sebelumnya yang berkaitan dengan proses optimasi rekomendasi perjalanan dan bagaimana permasalahan tersebut dimodelkan menggunakan pendekatan yang berbeda untuk mencari solusi yang optimal. Selain itu peluang penelitian yang dapat dilakukan untuk meningkatkan performa rekomendasi. Berdasarkan synthetic literatur review (SLR) dalam penelitian ini, didapatkan peluang penelitian yang dapat dilakukan untuk mendapatkan rekomendasi rute perjalanan yang optimal seperti kombinasi algoritma metaheuristic atau algoritma bio-inspired. Selain itu pada personalisasi pengguna terkait tempat wisata, terdapat peluang mengimplementasikan algorime deep learning seperti LTSM, Transformer, Bert sebagai nilai tempat wisata dari sisi pengguna","PeriodicalId":507205,"journal":{"name":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","volume":"11 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimalisasi Rekomendasi Rute Pada Perencanaan Perjalanan Wisata: Studi Pustaka\",\"authors\":\"A. Ramdani, D. Widyantoro, Rinaldi Munir\",\"doi\":\"10.57152/malcom.v4i2.1213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tourist trip design problems (TTDP) merupakan permasalahan yang berkaitan dengan bidang pariwisata. TTDP berkaitan dengan perencanaan pengguna dalam melakukan perjalanan wisata berdasarkan pada tempat wisata yang menarik. Dalam sistem rekomendasi, TTDP merupakan permasalahan yang menarik. Hal ini karena tidak hanya digunakan untuk menemukan tempat wisata yang sesuai dengan pengguna, tetapi juga untuk menggabungkan tempat wisata ke dalam rute perjalanan yang praktis dengan mempertimbangkan batasan. Pada artikel ini bertujuan menyajikan penelitian sebelumnya yang berkaitan dengan proses optimasi rekomendasi perjalanan dan bagaimana permasalahan tersebut dimodelkan menggunakan pendekatan yang berbeda untuk mencari solusi yang optimal. Selain itu peluang penelitian yang dapat dilakukan untuk meningkatkan performa rekomendasi. Berdasarkan synthetic literatur review (SLR) dalam penelitian ini, didapatkan peluang penelitian yang dapat dilakukan untuk mendapatkan rekomendasi rute perjalanan yang optimal seperti kombinasi algoritma metaheuristic atau algoritma bio-inspired. Selain itu pada personalisasi pengguna terkait tempat wisata, terdapat peluang mengimplementasikan algorime deep learning seperti LTSM, Transformer, Bert sebagai nilai tempat wisata dari sisi pengguna\",\"PeriodicalId\":507205,\"journal\":{\"name\":\"MALCOM: Indonesian Journal of Machine Learning and Computer Science\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MALCOM: Indonesian Journal of Machine Learning and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.57152/malcom.v4i2.1213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM: Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v4i2.1213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

旅游行程设计问题(TTDP)是一个与旅游业相关的问题。TTDP 与用户根据有趣的旅游景点制定旅行计划有关。在推荐系统中,TTDP 是一个有趣的问题。这是因为它不仅要用来寻找适合用户的旅游景点,还要通过考虑约束条件将旅游景点组合成一条实用的旅行路线。本文旨在介绍与旅游推荐优化过程相关的前人研究,以及如何使用不同方法对该问题进行建模,以找到最优解。此外,还介绍了提高推荐性能的研究机会。根据本研究中的综合文献综述(SLR),我们发现可以通过研究元搜索算法或生物启发算法的组合来获得最佳旅行路线推荐。除了与旅游景点相关的用户个性化外,还有机会实施深度学习算法,如 LTSM、Transformer、Bert 等,因为从用户方面看旅游景点的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimalisasi Rekomendasi Rute Pada Perencanaan Perjalanan Wisata: Studi Pustaka
Tourist trip design problems (TTDP) merupakan permasalahan yang berkaitan dengan bidang pariwisata. TTDP berkaitan dengan perencanaan pengguna dalam melakukan perjalanan wisata berdasarkan pada tempat wisata yang menarik. Dalam sistem rekomendasi, TTDP merupakan permasalahan yang menarik. Hal ini karena tidak hanya digunakan untuk menemukan tempat wisata yang sesuai dengan pengguna, tetapi juga untuk menggabungkan tempat wisata ke dalam rute perjalanan yang praktis dengan mempertimbangkan batasan. Pada artikel ini bertujuan menyajikan penelitian sebelumnya yang berkaitan dengan proses optimasi rekomendasi perjalanan dan bagaimana permasalahan tersebut dimodelkan menggunakan pendekatan yang berbeda untuk mencari solusi yang optimal. Selain itu peluang penelitian yang dapat dilakukan untuk meningkatkan performa rekomendasi. Berdasarkan synthetic literatur review (SLR) dalam penelitian ini, didapatkan peluang penelitian yang dapat dilakukan untuk mendapatkan rekomendasi rute perjalanan yang optimal seperti kombinasi algoritma metaheuristic atau algoritma bio-inspired. Selain itu pada personalisasi pengguna terkait tempat wisata, terdapat peluang mengimplementasikan algorime deep learning seperti LTSM, Transformer, Bert sebagai nilai tempat wisata dari sisi pengguna
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信