生物质高热值预测智能计算算法的性能分析

Q4 Engineering
U. A. Dodo, M. A. Dodo, A.F. Shehu, Y.A. Badamasi
{"title":"生物质高热值预测智能计算算法的性能分析","authors":"U. A. Dodo, M. A. Dodo, A.F. Shehu, Y.A. Badamasi","doi":"10.4314/njtd.v20i4.1856","DOIUrl":null,"url":null,"abstract":"Higher heating value (HHV) is an essential parameter to consider when evaluating and choosing biomass substrates for combustion and  power generation. Traditionally, HHV is determined in the laboratory using an adiabatic oxygen bomb calorimeter. Meanwhile, this  approach is laborious and cost-intensive. Hence, it is essential to explore other viable options. In this study, two distinct artificial  intelligence-based techniques, namely, a support vector machine (SVM) and an artificial neural network (ANN) were employed to develop  proximate analysis-based biomass HHV prediction models. The input variables comprising ash, volatile matter, and fixed carbon were  paired to form four separate inputs to the prediction models. The overall findings showed that both the ANN and the SVM tools can guarantee accurate prediction in all the input combinations. The optimal prediction performances were observed when fixed carbon and  volatile matter were paired as the input combination. This combination showed that the ANN outperformed the SVM, having presented  the least root mean squared error of 0.0008 and the highest correlation coefficient of 0.9274. This study, therefore, concluded that the  ANN is more preferred compared to SVM for biomass HHV prediction based on the proximate analysis. ","PeriodicalId":31273,"journal":{"name":"Nigerian Journal of Technological Development","volume":"57 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of Intelligent Computational Algorithms for Biomass Higher Heating Value Prediction\",\"authors\":\"U. A. Dodo, M. A. Dodo, A.F. Shehu, Y.A. Badamasi\",\"doi\":\"10.4314/njtd.v20i4.1856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher heating value (HHV) is an essential parameter to consider when evaluating and choosing biomass substrates for combustion and  power generation. Traditionally, HHV is determined in the laboratory using an adiabatic oxygen bomb calorimeter. Meanwhile, this  approach is laborious and cost-intensive. Hence, it is essential to explore other viable options. In this study, two distinct artificial  intelligence-based techniques, namely, a support vector machine (SVM) and an artificial neural network (ANN) were employed to develop  proximate analysis-based biomass HHV prediction models. The input variables comprising ash, volatile matter, and fixed carbon were  paired to form four separate inputs to the prediction models. The overall findings showed that both the ANN and the SVM tools can guarantee accurate prediction in all the input combinations. The optimal prediction performances were observed when fixed carbon and  volatile matter were paired as the input combination. This combination showed that the ANN outperformed the SVM, having presented  the least root mean squared error of 0.0008 and the highest correlation coefficient of 0.9274. This study, therefore, concluded that the  ANN is more preferred compared to SVM for biomass HHV prediction based on the proximate analysis. \",\"PeriodicalId\":31273,\"journal\":{\"name\":\"Nigerian Journal of Technological Development\",\"volume\":\"57 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nigerian Journal of Technological Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/njtd.v20i4.1856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nigerian Journal of Technological Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/njtd.v20i4.1856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

高热值(HHV)是评估和选择用于燃烧和发电的生物质基质时需要考虑的一个基本参数。传统上,HHV 是在实验室使用绝热氧弹热量计测定的。同时,这种方法费力且成本高昂。因此,有必要探索其他可行的方案。本研究采用了两种不同的人工智能技术,即支持向量机(SVM)和人工神经网络(ANN),来开发基于近似分析的生物质 HHV 预测模型。由灰分、挥发物和固定碳组成的输入变量配对形成预测模型的四个独立输入变量。总体结果表明,ANN 和 SVM 工具都能保证对所有输入组合进行准确预测。当固定碳和挥发性物质配对作为输入组合时,预测效果最佳。这一组合显示,ANN 的表现优于 SVM,其均方根误差最小为 0.0008,相关系数最高为 0.9274。因此,本研究得出结论,在基于近似分析预测生物质 HHV 时,ANN 比 SVM 更受青睐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Intelligent Computational Algorithms for Biomass Higher Heating Value Prediction
Higher heating value (HHV) is an essential parameter to consider when evaluating and choosing biomass substrates for combustion and  power generation. Traditionally, HHV is determined in the laboratory using an adiabatic oxygen bomb calorimeter. Meanwhile, this  approach is laborious and cost-intensive. Hence, it is essential to explore other viable options. In this study, two distinct artificial  intelligence-based techniques, namely, a support vector machine (SVM) and an artificial neural network (ANN) were employed to develop  proximate analysis-based biomass HHV prediction models. The input variables comprising ash, volatile matter, and fixed carbon were  paired to form four separate inputs to the prediction models. The overall findings showed that both the ANN and the SVM tools can guarantee accurate prediction in all the input combinations. The optimal prediction performances were observed when fixed carbon and  volatile matter were paired as the input combination. This combination showed that the ANN outperformed the SVM, having presented  the least root mean squared error of 0.0008 and the highest correlation coefficient of 0.9274. This study, therefore, concluded that the  ANN is more preferred compared to SVM for biomass HHV prediction based on the proximate analysis. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nigerian Journal of Technological Development
Nigerian Journal of Technological Development Engineering-Engineering (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
40
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信